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SUMMARY

Nuclear pore complexes (NPCs) mediate the nucleocytoplasmic transport of macromolecules. 

Here we provide a structure of the isolated yeast NPC in which the inner ring is resolved 

by cryo-EM at sub-nanometer resolution to show how flexible connectors tie together different 

structural and functional layers. These connectors may be targets for phosphorylation and 

regulated disassembly in cells with an open mitosis. Moreover, some nucleoporin pairs and 

transport factors have similar interaction motifs, which suggests an evolutionary and mechanistic 

link between assembly and transport. We provide evidence for three major NPC variants that 

may foreshadow functional specializations at the nuclear periphery. Cryo-electron tomography 

extended these studies, providing a model of the in situ NPC with a radially expanded inner ring. 

Our comprehensive model reveals features of the nuclear basket and central transporter, suggests 

a role for the lumenal Pom152 ring in restricting dilation, and highlights structural plasticity that 

may be required for transport.

In brief

A comprehensive model of the yeast NPC reveals an interconnected architecture of the core 

scaffold and provides an understanding of the isoforms and structural plasticity that may be 

associated with different functional states.

Graphical Abstract
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INTRODUCTION

Nuclear pore complexes (NPCs) are cylindrical assemblies with 8-fold symmetry that form a 

gateway in the nuclear envelope (NE) for the selective exchange of macromolecules between 

the cytoplasm and nucleus. These transport machines stabilize a pore in the NE, termed 

the pore membrane, and are key players in RNA processing and chromatin organization 

(D’Angelo, 2018; Fernandez-Martinez and Rout, 2021; Kuhn and Capelson, 2019; Ptak et 

al., 2014). Given this central role, it is not surprising that NPC defects are linked to many 

diseases and that nuclear transport is a target for therapeutics (Jühlen and Fahrenkrog, 2018; 

Simon and Rout, 2014). NPCs from the Saccharomyces are smaller (52 MDa) (Kim et 

al., 2018) than their vertebrate cousins (~109 MDa) (Ori et al., 2013); however, both are 

composed of about 30 conserved nucleoporins (Nups).

In the yeast NPC, ~550 Nups in multiple copies are arranged in three coaxial rings: an inner 

ring (IR) with 8 massive subunits (termed spokes) is flanked by cytoplasmic and nuclear 

outer rings to form the core scaffold. In addition, a Pom152 ring is anchored to the spokes 

and extends into the NE lumen (Kim et al., 2018). A cylindrical basket is attached to the 

nuclear outer ring and together with the Nup82 complex on the cytoplasmic side forms 

a pipeline for RNA processing and export (Fernandez-Martinez et al., 2016; Gaik et al., 

2015). The scaffold provides anchor points for an array of Nups with intrinsically disordered 

Phe-Gly (FG) repeat domains that project inward to form the central transport path (Kim et 

al., 2018; Yamada et al., 2010); these FG domains provide binding sites for the bidirectional, 
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facilitated diffusion of nuclear transport factors with macromolecular cargos (Knockenhauer 

and Schwartz, 2016; Paci et al., 2021).

Positional maps and molecular models have been generated for NPCs from yeast, humans, 

amphibians, and algae using cryo-electron tomography (cryo-ET), single particle electron 

cryo-microscopy (cryo-EM), X-ray crystallography, and integrative structure determination 

(Bui et al., 2013; Huang et al., 2020; Kim et al., 2018; Kosinski et al., 2016; Lin et al., 2016; 

Mosalaganti et al., 2018; von Appen et al., 2015; Zhang et al., 2020). These models have 

revealed a remarkable structural redundancy and plasticity of the NPC. Thus, the number 

and composition of the outer rings can vary between species (Bui et al., 2013; Kim et 

al., 2018; Mosalaganti et al., 2018), and changes in the functional size of the NPC have 

been observed (Feldherr and Akin, 1994; Mahamid et al., 2016). Moreover, recent 3D maps 

obtained by cryo-ET of cell cryo-sections from C. reinhardtii, S. cerevisiae, S. pombe, and 

H. sapiens have revealed a large radial expansion of the inner ring (Mosalaganti et al., 2018; 

Allegretti et al., 2020; Zimmerli et al., 2021; Schuller et al., 2021).

Even with these steps forward, our understanding of NPC structure and its role in transport 

remains incomplete. To address this issue, we determined three-dimensional (3D) structures 

of isolated and in situ yeast NPCs with radially contracted and expanded inner rings. Our 

comprehensive model provides insights into the structure, assembly, transport mechanism, 

and evolution of the NPC.

RESULTS

Overview of isolated and in situ yeast NPCs

The large size, flexibility, and dynamic properties of the NPC present a challenge 

to structural studies; thus, a divide-and-conquer approach is required to determine a 

comprehensive structure. We used cryo-EM and single particle analysis of isolated NPCs 

to generate a combined 3D map with the inner ring and double outer ring at 7.6 and 11 

Å resolution, respectively (Figure 1A, top; Methods S1; Table S1). Cryogenic, focused ion 

beam milling of yeast cells, cryo-ET, and subtomogram analysis were then used to provide a 

3D map of the in situ NPC at 30–40 Å resolution (Figures 1B [top]; Table S1). These density 

maps reveal the NPC in two different states and highlight important specimen differences. 

Notably, the isolated NPC lacks a pore membrane while retaining a lipid-detergent ring, 

has an hourglass-shaped central transporter, and contains a double outer ring on the nuclear 

side. In addition, the Nup82 complex and cytoplasmic outer ring are blurred due to detergent 

extraction (Figure 1A [top]). Conversely, the Nup82-Dynein 2 (Dyn2) complex of the in situ 
NPC is well resolved, and basket anchors are visualized on the single nuclear outer ring 

(Figure 1B [top right]). However, the central transporter was not imaged clearly with the 

limited in situ dataset.

Crystal structures and homology models of Nups were docked within composite density 

maps to create molecular structures of the isolated and in situ NPC (Figures 1A and 1B 

[bottom]). We found that density for the Nup82 complex can be overlayed after aligning 

the inner rings of the isolated and in situ NPC to bring these maps into register, so we 

used the cytoplasmic outer ring and Nup82-Dyn 2 complexes from the in situ structure 
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to create a composite, in silico model of the isolated NPC (Figure 1A [bottom]; Video 

S1). Higher-resolution models of the inner ring and double outer rings from the isolated 

NPC were then used to create a model of the in situ NPC (Figure 1B [bottom]). A direct 

comparison reveals a large radial dilation of the in situ inner ring (compare Figures 1A and 

1B) (Allegretti et al., 2020; Mosalaganti et al., 2018; Schuller et al., 2021) that is coupled 

with an expanded membrane pore and Pom152 ring. This dilation creates a central channel 

that is ~2× larger in volume; this alters the packing density of FG domains and may affect 

nuclear transport.

Functional domains of the inner ring at sub-nanometer resolution

The inner ring has nearly perfect 2-fold symmetry in the isolated NPC, and a majority of 

the ~715 ɑ-helices in each spoke were resolved in the single particle structure (Figures 

1A and 2A–2D). In total, 28 Nup domains and flexible connectors were modeled (Figures 

1A [bottom], S1, S2, S3, S4, and S5) with a root mean square deviation (rmsd) of ~8Å 

for Cαs in core domains, relative to a previous integrative model (Kim et al., 2018). This 

improved model is supported by mapping 206 cross-links to the inner ring with 95% 

satisfaction (Figure S5B). Major insights include the visualization of functional layers, 

domain rearrangements within the spoke, and the identification of flexible connectors.

The spoke is comprised of an inner spoke domain (ISD), with two layers and an outer spoke 

domain (OSD) with a single layer (see gap, Figures 2E and 2H). The inner layer of the ISD 

contains two pairs of laterally offset Nsp1 heterotrimers (Nsp1, Nup49, and Nup57) related 

by 2-fold symmetry that face into the central channel (Figures 1A [bottom], 2D–2H, S3), 

while symmetry-related pairs of Nup188 and Nup192 form an intermediate, adaptin-like 

layer (Figures 2D and S3B). Both layers bind to an array of “orphan” connectors (Figures 

2G and S3). The membrane interaction layer in the OSD contains four Nic96 C-terminal 

domains (CTDs), which form keystone supports (Kim et al., 2018) for Nup157 and Nup170 

(2 copies each), while Nup53-Nup59 heterodimers form bridges between adjacent Nic96 

CTDs in the top and bottom half of this layer (Figures S2C and S3A).

This multilayered organization reflects the functional specialization of Nups within the 

spoke (Figures 2D and S3; Video S2). The inner layer creates a scaffold to deploy FG 

repeats from the N termini of Nsp1, Nup57, and Nup49 into the transport path. The first 

3-helix bundle of each Nsp1 heterotrimer forms an elongated coiled coil (Figures 2G, S2A, 

and S3D) on the inner face of the spoke, and these features create a ring with an diameter of 

~425 Å that defines the central channel (Figure 1A [bottom]) (Kim et al., 2018; Kosinski et 

al., 2016; Lin et al., 2016). In addition, Nsp1 complexes from the top and bottom half of the 

spoke each contribute a pair of 3-helix bundles that extend inward to form a diagonal wall, 

with two walls per spoke (Figures 3A, 3B, and S2A). This also creates a local 2-fold axis for 

structural elements in each wall.

Nups 192 and 188 in the middle layer contain adaptin-like domains (Figures S2B and S3B) 

(Flemming et al., 2012; Sampathkumar et al., 2013) that connect the inner layer of Nsp1 

complexes to the membrane interacting layer (Figures 2D and S3C). By comparison with 

previous models, Nup192 and Nup188 CTDs rearrange when they interact with partner 

Nups and connectors; for example, CTD tails of Nup192 are bent and stacked back-to-
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back to form a central column in the spoke (Figure S3B, center). Moving outward, the 

membrane-interacting layer may help shape and stabilize the pore membrane (Figures 2H 

and S3A) (Kim et al., 2018; Kosinski et al., 2016; Lin et al., 2016); Nups 157 and 170 

have amphipathic membrane binding motifs (MBMs) in their N-terminal β-propellers, while 

Nup53 contains a C-terminal membrane interaction motif (Stuwe et al., 2015). Our data 

support the idea that NPCs have evolved for flexibility (Beck et al., 2018; Field and Rout, 

2019; Kim et al., 2018; Pulupa et al., 2020). Spoke movements may be facilitated by gaps 

and voids between Nups (asterisks, Figure 2E, dashed lines in Figures 2H and 2I) and by 

limited edgewise contacts between neighbors.

The role of Nic96 connectors in NPC structure and assembly

Biochemical and structural data have begun to show how flexible connectors tie together 

folded Nup domains to stabilize the spoke (Fischer et al., 2015; Hampoelz et al., 2019; Kim 

et al., 2018; Lin et al., 2016; Mosalaganti et al., 2018). In particular, two sequence motifs, 

known as short linear motifs (SLiMs), have been recognized in the N termini of yeast Nic96 

and human Nup93. The first motif interacts with the Nsp1 complex in the inner layer (Chug 

et al., 2015; Lin et al., 2016; Stuwe et al., 2015), while the second motif binds to Nup188 

and Nup192 in the adaptin-like layer (Amlacher et al., 2011; Fischer et al., 2015; Lin et al., 

2016).

At the current resolution, orphan densities were revealed in the spoke that could not be 

accounted for by docked models. The density of these orphans is similar to neighboring 

Nups which indicates a high occupancy. Three orphans (group of 3) interact with 3-helix 

bundles in the diagonal walls, and a gap at the center of each wall is filled by 4 orphans 

arranged in two groups of 2 (Figures 3B, 3C, and S2A). We also identified 3 orphan helices 

that bind to Nup192 and two orphan helices that bind to Nup188, which are present in two 

copies per spoke. In total, 30 orphan densities were mapped in the spoke that arise from 

flexible connectors. To solve the identity and connectivity of these orphans, we applied 

an integrative threading approach (Saltzberg et al., 2019) to compute Nup identity, copy 

identifier, and sequence segments for structure elements (SEs) in each orphan (Figure S4; 

STAR Methods). This resulted in 28 orphan SEs being confidently assigned to contiguous 

sequences in four Nic96 N-terminal domains (NTDs) (Figure S4E).

In the resulting model, the group of 3 orphans (Figure 3C) is similar to the helix-strand-helix 

motif in the crystal structure of a Nic96 SLiM bound to the Chaetomium Nsp1 complex 

(Figure S5F) (Stuwe et al., 2015). Differences between our model and the crystal structure 

include a repositioning of C-terminal 3-helix bundles in the spoke to form a diagonal wall. 

Two paired ɑ-helices at the center of each wall (group of 2, Figure 3C) immediately follow 

the helix-strand-helix motif (Figures 3C and S5A). The final two orphan helices in each 

Nic96 NTD bind to Nup188 or to Nup192 CTDs; these ɑ-helix pairs contain helices of 

different lengths and originate from the same sequence in the outer and inner copies of 

Nic96 (Figures 3C–3E). Thus, the same Nic96 sequence can form different ɑ-helix pairs that 

bind to Nup188 or Nup192. In total, the N termini of four Nic96 molecules contribute 28 

connectors with 24 ɑ-helices and 4 strands per spoke. Two unassigned orphans are bound 
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to Nup192 NTDs (Figures 3C [pink cylinders], S3D, and S4B [SE8]); these long, rod-like 

connectors may originate from Nup53/59, Nup100, Nup116, or Nup145N.

Collectively, these 28 connectors play important roles in spoke architecture. First, we 

showed that Nic96 interacts with every other Nup to form a keystone that holds much 

of this structure together (Kim et al., 2018); here, we find that Nic96 connectors are 

critical for the recruitment of Nsp1 complexes and tie together the three spoke layers 

(Figures 3A–3C; Video S2). This network could provide the inner ring with flexibility to 

sustain expansion-contraction motions during transport. Second, our structure may provide 

insights into the mechanism by which NPCs assemble and disassemble. Rapid assembly 

during interphase may be dependent on the ability of flexible connectors to form extensive 

interactions between Nups in different layers, tying these components together quickly and 

efficiently into the mature inner ring. S. cerevisiae has a closed mitosis; however, the overall 

architecture of the spoke is highly conserved (Figure S8) (Zimmerli et al., 2021). Partial 

mitotic disassembly in Aspergillus (a related fungus) is directly dependent on connector-

containing Nups (Nup145N, Nup116, and Nup100 [De Souza et al., 2004]). Importantly, 

Nic96, Nup188, and Nup192 undergo mitotic disassembly upon activation of NIMA and 

Cdk1 kinases (Osmani et al., 2006); these Nups are tied together by flexible connectors in 

our structure. Moreover, homologous regions in human Nups are hyper-phosphorylated at 

mitosis, including NTD connectors of Nup93, a Nic96 homolog (Figure S5A). This process 

disrupts the spoke and promotes NPC dis-assembly (Dephoure et al., 2008; Linder et al., 

2017).

Nucleoporins and transport factors share common interaction mechanisms

Extended ɑ-helical solenoids of Nup188 and Nup192 are similar to Karyopherin transport 

factors, which indicates that Nups and Karyopherins may share a common evolutionary 

origin (Alber et al., 2007b; Devos et al., 2004; Devos et al., 2006; Field et al., 2011; 

Flemming et al., 2012; Sampathkumar et al., 2013). Here, we show that pairwise interactions 

are formed by CTD tails of Nup192 and Nup188 with ɑ-helices from Nic96 NTDs.

These data provide insights into how the nuclear localization signal (NLS) recognition 

system may have arisen, and point to a mechanistic link between spoke assembly and 

transport. In particular, a long ɑ-helix of Nic96 is cupped by a spiral of ɑ-helices in 

the Nup192 CTD; this motif resembles the interaction between Karyopherin β and its 

transport cargos (Figures 3D–3F) (Bhardwaj and Cingolani, 2010; Cingolani et al., 1999). 

An adjacent, short orphan helix may stabilize this interaction which occurs twice at the 

spoke center (Figures 3D and 3E). This motif is shown side-by-side with overlayed crystal 

structures of human Importin β1 with the ɑ-helical, NLS-like importin beta binding (IBB) 

domain of Importin ɑ (Figure 3G [right, tan], PDB 1QGK) (Cingolani et al., 1999) and with 

the Snurportin 1 IBB (Figure 3G, gray, PDB 3LWW) (Bhardwaj and Cingolani, 2010). The 

similar topology of ɑ-helices in the Nup192 CTD and β-Importin structures is indicated by 

the numbering scheme. The curved tail of Nup188 also binds a short C-terminal helix from 

the Nic96 NTD in a manner reminiscent of a transport factor-IBB interaction (Figures 3D 

and 3H, blue cylinders) (Bhardwaj and Cingolani, 2010; Cingolani et al., 1999).
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A double outer ring in a subset of yeast NPCs

Single outer rings in yeast NPCs are formed by the head-to-tail arrangement of 8 Y-shaped 

Nup84 complexes (Alber et al., 2007b; Allegretti et al., 2020; Fernandez-Martinez et al., 

2012; Kelley et al., 2015; Lutzmann et al., 2002). In isolated NPCs, the single outer rings 

are disordered (Kim et al., 2018); however, we identified particles with a double outer ring 

(~20%) and solved the structure at ~11.3 Å resolution (Figures 2A; Methods S1). The 

double outer ring is present on the nuclear surface (Figures 1A, [top right] and 2F)—as 

confirmed by quantitative in situ fluorescence (see below in this section). A double outer 

ring has also been observed on the nuclear face of NPCs in C. reinhardtii and S. pombe 
(Hampoelz et al., 2019; Zimmerli et al., 2021). However, we now show that at least three 

NPC variants are present in the yeast nucleus.

We modeled 14 Nupsin two Y-shaped Nup84 complexes, starting with Nup crystal structures 

(Kelley et al., 2015). The complete model provides a snapshot of Y-complexes in two ring 

geometries (Figures 4A–4C); the membrane proximal ring is continuous while the distal 

ring contains a gap between adjacent Y-complexes (Figure 4C, top). The two Y-shaped 

molecules form typical staggered contacts (Figure 4D, right) (Fernandez-Martinez et al., 

2012; Kelley et al., 2015) with distinct tail conformations (Figure 4D [left and middle]). The 

β-propellers of Nup120 and Nup133 contain amphipathic MBMs; however, only three of the 

four β-propellers are involved in membrane contacts A Nup133 β-propeller is sandwiched 

between two Nup120 β-propellers to create a three-point landing at a single site on the 

membrane surface (Figures 4C and 4E, asterisks). Conversely, a Nup84 domain and the 

Nup133 spur form a torus-shaped bulge in the tail of the distal Y-complex (Figure 4D, 

left) that pulls the adjacent β-propeller upward to interact with the Nup133 spur from a 

Y-complex in the proximal ring (Figures 4D [right] and 4E). Thus, the Nup133 spur domain 

has two distinct functions in the double outer ring.

We then identified orphan densities in the double outer ring. First, an orphan density that 

resembles Nup188 or Nup192 runs along the top of the distal Y-complex (Figures 4A and 

4E, in red). This unexpected moonlighting by Nup188/192 parallels previous observations of 

vertebrate homologs (Nup188/Nup205), which are present in both the outer and inner rings 

(Bui et al., 2013; Huang et al., 2020). In vertebrates, Nup188/205 molecules occupy the 

inward facing surface of the highly tilted cytoplasmic outer rings (Huang et al., 2020), while 

in yeast a single copy of either Nup188 or Nup192 sits on the upper surface of the double 

ring, interacts with the torus of a distal Y-complex (Figure 4E), and may help stabilize this 

unusual tail conformation. Second, three additional orphans associate with each protomer in 

the double outer ring. The first orphan interacts with Nup85 and points toward the central 

channel (Figure 4E, orphan 1), while two orphans (silver) are located between adjacent 

Y-complexes. (Figure 4E, orphans 2 and 3). The identity of these orphans remains to be 

determined.

To further characterize the outer rings, we used quantitative in situ fluorescence with 

one module of Nup84 tagged with a split green fluorescent protein (GFP) to monitor the 

outer rings, while the remaining module was placed on a reporter localized to either the 

nucleoplasmic or cytoplasmic side of the NE. The reconstitution of fluorescence signal 

confirmed that all NPCs have outer rings on their nuclear and cytoplasmic faces (Figures 
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S6A and S6B). In addition, a population of NPCs is located over the dense crescent with low 

levels of Mlp1, and a population with higher levels of Mlp1 is excluded from this region. 

Signal distribution curves show that a subset of the “high” Mlp1 NPCs have, on average, 

more outer ring signal than “low” Mlp1 NPCs (~20%), and the extra signal is on the nuclear 

side (Figure S6C). Thus, each nucleus contains NPC variants with single and double outer 

rings on their nucleoplasmic faces, while some lack nuclear baskets and are differentially 

localized at the nuclear periphery. Overall, the data are consistent with three NPC variants 

co-existing in yeast cells: (1) the predominant form has two single outer rings that frame the 

inner ring (Form I); (2) a second form has a single outer ring on the cytoplasmic surface 

paired with a double outer ring on the nuclear surface (Form II), both with nuclear baskets; 

and (3) a third NPC variant (Form III) has two single outer rings, lacks the nuclear basket, 

and is enriched over the nucleolus.

A comprehensive structure of the yeast NPC in situ

The NPC is a dynamic assembly that undergoes conformational changes with a range 

of effective diameters (Feldherr et al., 1998; Mahamid et al., 2016) and exhibits a large 

radial expansion in cells (Allegretti et al., 2020; Mosalaganti et al., 2018; Zimmerli et al., 

2021). We used cryogenic, focused ion beam milling of cells at mid-log phase, cryo-ET, 

and subtomogram analysis to generate a 3D density map of the in situ NPC. This map is 

comparable to a recent structure (Allegretti et al., 2020) (Figures S7A–S7D; Table S1; STAR 

Methods) and provides additional insights. An overview of the in situ NPC is shown in 

Figure 5A along with an exploded view of the core scaffold. The canonical in situ NPC 

has single outer rings on both faces and a radially expanded configuration for the spokes, 

the pore membrane, and Pom152 ring (Figure 1B). Moreover, there is a striking difference 

between the outer rings with the diameter of the nuclear outer ring being ~100 Å larger than 

the cytoplasmic ring (radial offset, Figure 5A).

We leveraged models for the isolated NPC, the Nup82 complex (Fernandez-Martinez et al., 

2016), and a recent study (Allegretti et al., 2020) to build a model of the in situ NPC. 

The cytoplasmic outer ring is tilted relative to the plane of the NE due to interactions with 

the Nup82 complex, which overhangs the central channel. Conversely, the outer ring on 

the nuclear face lies flat on the membrane (Figures 5B and 5C). In the inner ring, 3-helix 

bundles from opposing Nsp1 complexes extend into the spoke interior to form two diagonal 

walls that tie the top and bottom halves together (Figure S7E, panels 1 and 2). A cavity is 

located between the diagonal walls and lies in front of a central column formed by Nup192 

CTDs (Figure S7E, panels 2–4), while the membrane interacting layer is resolved at higher 

radius (Figure S7E, panel 5). A local asymmetry may arise from differential contacts to the 

outer rings as reflected by the position of Nup188.

The Nup82 complex is comprised of Nup82, Nup159, and Nsp1 and forms a non-canonical 

dimer that interacts with Nup85 in Y-complexes of the cytoplasmic outer ring (Figures 

5C–5E) (Allegretti et al., 2020; Fernandez-Martinez et al., 2016). We modeled three Dyn2 

dimers with Nup159 peptides (Gaik et al., 2015; Romes et al., 2012) in a vertical feature 

of the Nup82 complex; however, their rotational alignment has not been determined. This 

feature may direct N-terminal FG domains of Nup159 into a region above the central 

Akey et al. Page 9

Cell. Author manuscript; available in PMC 2022 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



channel along with tethered Dbp5 (an RNA helicase; Allegretti et al., 2020). In addition, 

linker density from Nsp1 molecules may position FG repeats in the transport path (Figures 

5C and 5E). The single, nuclear outer ring contains a gap between Nup133 and Nup120 β-

propellers in adjacent Y-complexes (Figure 5F); these gaps increase the outer ring diameter 

(Figure 5A, panel 1). We also find that the Nup133 spur domain interacts with the pore 

membrane along with β-propellers of Nup133 and Nup120 (asterisks, Figure 5F). A 3D map 

of the in situ NPC with a double outer ring was not determined due to the low frequency of 

this feature. The structure of the in situ NPC is summarized in Video S3.

A side-by-side comparison of inner rings from isolated and in situ NPCs reveals the 

plasticity of this transport machine (Figure 6A). The spoke, and by inference the pore 

membrane, undergoes a large radial movement (~80 Å) during inner ring dilation (Zimmerli 

et al., 2021), and the diameter of the central channel is increased from ~425 Å to ~585 Å. 

This nearly doubles the volume accessible to FG domains, which project into the central 

channel. Gaps are formed between adjacent spokes (Figure 6A) and lateral contacts are lost, 

while Nsp1 complexes in each spoke become separated yet remain facing into the central 

channel. Nup170 molecules from adjacent spokes retain contacts with the pore membrane 

and with each other during dilation (Figure 6A, Nup170, red dots). In addition, the NTD of 

Nup192 and a CTD of Nic96 make an inter-spoke contact.

The structural plasticity exhibited by the yeast inner ring may be facilitated by flexible 

links between the spokes and outer rings, by limited interactions between adjacent spokes, 

and by a fenestrated architecture that allows small movements of flexible Nups within each 

spoke. Aligned models of isolated and in situ spokes have an average rmsd of ~9.5 Å 

for Cɑ backbones after excluding Nup170. Models of the yeast spoke can be docked into 

cryo-ET maps of human and algal NPCs with isolated and in situ conformations (Figure 

S8) (Allegretti et al., 2020; Kosinski et al., 2016; Mosalaganti et al., 2018). The quality of 

this cross-species docking underscores the high level of structural conservation in the spoke, 

which includes a demarcation into three structural and functional layers, the formation of a 

central column by Nup192 homologs, and the presence of diagonal walls, which suggests a 

conserved role for Nic96 and Nup93 connectors.

The conformation of the inner ring is not determined solely by the presence or absence of 

the pore membrane, as NPCs in isolated NEs have a contracted conformation (Kosinski et 

al., 2016; Lin et al., 2016). In fact, recent work suggests that nuclear membrane tension may 

play a role in dilation (Zimmerli et al., 2021). We suggest that a dilated inner ring with an 

expanded membrane pore and Pom152 ring (Figures 1B and 6A) may represent a “tense 

state” of in situ NPC, which can relax to a more compact conformation, typified by the inner 

ring in isolated NPCs (Kim et al., 2018; Kosinski et al., 2016; Lin et al., 2016).

Basket anchor pairs on the nuclear outer ring

A basket extends from the nuclear face of the NPC and this feature has been identified in 

multiple organisms (Rout and Blobel, 1993; Strambio-de-Castillia et al., 2010). Mlp1 and 

Mlp2 paralogs are the major basket components in yeast and are predicted to be coiled 

coil proteins (Niepel et al., 2013; Strambio-de-Castillia et al., 1999). Our map of the in 
situ NPC revealed a pair of bifurcated densities that associate with each Y-complex in the 
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nuclear outer ring and point toward the interior (Figures 1C (silver), 5A, and 6B). Their 

extended shape and position suggest that these motifs are anchors for the nuclear basket. We 

docked 14 two-helix coiled coils into these densities as markers (Figure 6C). The resulting 

model contains two similar motifs highlighted in red and blue, each with a “bent T” and an 

“extended” element (Figure 6D). The base of the red T interacts with the Nup85-Nup145C 

interface while the extended structural element abuts Nup84 (Figure 6D, red asterisks). The 

blue anchor motif also has two anchor points on the Y-complex but only one is visible in 

Figure 6D (blue asterisk). In this case, a short stem from the bent T is associated with the 

Nup145C-Nup84 interface, while the extended element inserts into a gap between Nup133 

and Nup120 β-propellers from adjacent Y-complexes. This model provides a rationale for 

gaps observed in the nuclear outer ring.

The topology of the basket anchors suggests that coiled coils and segments from Mlp1/2, 

Nup145N and Nup60 (Kim et al., 2018) could contribute to these features. However, the 

observation of two topologically similar motifs that associate with each Y-complex serves 

to validate these features and suggests that the recurring theme of laterally offset Nup 

duplicates or paralog pairs within the NPC may pertain to the basket, as exemplified by 

Mlp1 and Mlp2 (Alber et al., 2007b; Devos et al., 2004; Devos et al., 2006; Kim et al., 

2018).

Membrane interactions of the inner ring

Interactions with the NE are critical for assembly and for maintaining the NPC within 

the pore membrane aperture (Kosinski et al., 2016; Mosalaganti et al., 2018, Allegretti et 

al., 2020; Schuller et al., 2021). In the isolated NPC, a lipid-detergent ring encircles the 

inner ring (Figure 1A) and encompasses partly resolved transmembrane domains (TMDs) 

of Pom152, Pom34, and Ndc1 (Figures 2B [asterisks], S9A, and S9B [dashed ovals and 

asterisks]). MBMs in β-propellers of Nup157 and Nup170 (Drin et al., 2007; Kim et 

al., 2014; Mészáros et al., 2015; Shi et al., 2014) contact the pore membrane, and these 

interactions are consistent with the protocoatomer hypothesis (Devos et al., 2004; Kim et 

al., 2018). The density map for the isolated NPC, coupled with peptide cross-link data (Kim 

et al., 2018), indicate that Nup157 β-propellers interact with Pom152 near the spoke 2-fold 

axis (MAC157) (Figures 2B and S9B [black asterisks]), while adjacent Nup170 β-propellers 

interact with Ndc1 dimers (MAC170) (Figure 2B and S9B [blue asterisks]) (Mansfeld et 

al., 2006; Vollmer et al., 2012). Diagonally arrayed, membrane-interacting layers in adjacent 

spokes form a nearly continuous band when viewed from the pore membrane (Figure 

S9C, red dots). Similar contacts are present in the in situ NPC, but with a larger spacing 

between adjacent layers (Figure S9F, red dots). Nup53-Nup59 dimers are located between 

neighboring Nic96 CTDs and help tether the inner ring to the pore membrane (Figures 9F 

[green dots], S9C, and S9E [green asterisks]) (Lin et al., 2016; Kim et al., 2018; Marelli 

et al., 2001). A local asymmetry at higher radius in the in situ NPC may result from 

altered membrane interactions, as contacts for Nup170, Nup53-Nup59, and Nup157 are 

more extensive on the left side of the spoke when viewed from the cytoplasm (see asterisks, 

Figure S9E). Pom152 and Ndc1 follow the local 2-fold symmetry of the radially contracted 

inner ring, while these critical interactions may be altered during radial expansion.
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Two Pom152 molecules are anchored to each spoke by their NTDs while their CTDs form 

a lumenal ring in the NPC (Kim et al., 2018) (Figures 1A and 1B). Each Pom152 has 

10 immunoglobulin-like repeats (Hao et al., 2018; Upla et al., 2017) that overlap with a 

molecule from a neighbor to form a lumenal arch, and 8 arches create a sinusoidal ring 

in the isolated NPC (Figures 1A [inside ring] and S9G). Cross-linking data suggest that 

Pom34 may associate with the TMD of Pom152 (Kim et al., 2018). The Pom152 ring in 

the isolated NPC has an outer contour of ~400 Å for one repeat, while dilation expands the 

sinusoidal ring into a nearly circular profile with a repeat of ~440 Å (Figures 5A and S9G 

[outside ring]). Integrative models for the Pom152 rings revealed two anti-parallel strands of 

immunoglobulin-like domains, aligned in a side-by-side manner (Figure S9H). The position, 

robust construction, and interaction of the Pom152 ring with the spokes suggests that this 

belt-like feature may help limit the extent of radial expansion by the inner ring and pore 

membrane (Figure 7D).

Nsp1 complex connections to FG domains in the central channel

The N termini of Nsp1 complexes in the inner ring extend into the central channel where 

they account for ~38% of the FG domains in the transport path (Kim et al., 2018; Yamada et 

al., 2010; Eibauer et al., 2015). Three rods per Nsp1 complex were used—as linear markers

—to track these connections, which were resolved at ~20Å resolution (Methods S1). In total, 

four connecting densities per spoke are present in two groups, with one group of 3 red and 

3 blue rods located at the central 2-fold axis and a second group at the boundary between 

spokes (Figures 1A [top] and 6E). We find that Nsp1 complexes are positioned precisely 

so that their N-terminal FG repeats may extend through the connections into the transport 

channel. Our 3D map of the in situ yeast NPC also displays prominent connections, but with 

a different configuration (Figure 6F). During dilation, each spoke moves radially outward to 

create a gap between adjacent Nsp1 complexes (Figures 6A, 6E, and 6F [gap]). This causes 

paired connections from adjacent spokes in the contracted inner ring to split laterally and 

creates a visible bridge from the N termini of each Nsp1 complex, while connections in 

the center group remain intact until they bifurcate as they enter the channel. Radial dilation 

also creates a new lateral contact with FG connections from an adjacent spoke (Figure 6F 

[arrow]).

We then calculated a global average of the central transporter in the isolated NPC, which 

is viewed at a higher threshold due to its flexibility and structural heterogeneity (Figure 1A 

[top]; ~310Å diameter by ~460–500Å in height) (Kim et al., 2018; Akey and Radermacher, 

1993; Yang et al., 1998). The central transporter has two cylindrical regions with a less 

dense central waist, and spoke connections encircle the waist (Figure 6E). The transporter is 

less ordered near the center and at regions facing the cytoplasm and nucleoplasm (Methods 

S1). Our data suggest that the transporter is created by densely packed FG domains along 

with trapped transport factors and cargo complexes (Kim et al., 2018). Central transporter 

density is also present in a global 3D map of the in situ NPC; however, a larger dataset is 

required to characterize this feature. Even so, inner ring dilation increases the volume of the 

central channel by ~2-fold and alters the pattern of connections to Nup FG domains. We 

surmise that radial expansion may alter the distribution of FG domains to facilitate transport.

Akey et al. Page 12

Cell. Author manuscript; available in PMC 2022 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DISCUSSION

In this work, a multi-pronged approach has provided a comprehensive picture of the 

yeast NPC, generating insights into the architectural principles, evolutionary origins, and 

structure-function relationships of this transport machine.

A layered organization and flexible connectors suggest a mechanism for reversible NPC 
assembly

We resolved the inner ring at sub-nanometer resolution and identified 28 connectors from 

Nic96 NTDs that tie together the inner and outer domains of the yeast spoke. Our model 

supports the idea that the layered organization of Nup folds in the NPC may reflect its 

evolution. Nups in the outer rings and the membrane-interacting layer share similar folds 

with COPI and COPII families of vesicle coating proteins, which probably merged to form 

a proto-NPC (Field and Rout, 2019). β-propellers in these Nups contain MBMs that help 

anchor the NPC to the pore membrane. Moving inward, the next layer is comprised of 

two adaptin-like proteins, underscoring the common evolutionary origin of vesicle coating 

proteins and the NPC. These proteins also share structural homology with Karyopherin 

transport factors. The innermost layer contains Nsp1 complexes that form two diagonal 

walls and provide anchor points to position N-terminal FG repeat domains within the central 

channel (Figures 6E, 6F, and 7A).

A key question is “how can NPCs assemble and disassemble so quickly?” We find that 

flexible Nic96 connectors tie together the layers of the inner ring (Figure 7A) and may 

play a crucial role during NPC assembly. Connectors in the Nic96 NTD are targets for 

reversible phosphorylation in eukaryotes that undergo mitotic dis-assembly and re-assembly, 

along with SLiMs of Nup53/Nup59, Nup100, Nup116, and Nup145N. (De Souza et al., 

2004; Laurell et al., 2011; Linder et al., 2017). We speculate that disassembly may be 

correlated with a phosphorylation-dependent “untying” of these connectors (see red stars, 

Figure 7A). Assembly would involve a tying together of Nups, which may occur upon 

dephosphorylation at the end of telophase or may use newly synthesized Nups during 

interphase (Kutay et al., 2021). In the simplest model, Nic96 CTDs associate with Nup157 

and Nup170 to create the membrane-interacting layer at the pore membrane. This would 

provide anchor points for Nic96 NTDs during assembly to interconnect the three structural 

layers of the spoke. These connectors may allow the NPC to accommodate large changes in 

diameter and adapt to local stresses during transport.

A link between nucleoporin assembly and NLS mediated transport

Our analysis indicates that spoke assembly may be dependent on interaction motifs which 

are akin to those that occur between transport factors (Figure 7B). The ɑ-helical solenoid 

of the Nic96 CTD is structurally similar to Karyopherin ɑ, while Nup192 and Nup188 may 

share a common ancestor with β-Karyopherins (Andersen et al., 2013; Sampathkumar et al., 

2013; Stuwe et al., 2014). Interactions of the Nic96 NTD with Nup192, and to a lesser extent 

with Nup188, resemble the binding of the IBB domain of Karyopherin ɑ and NLSs with 

Karyopherin β1 (Figure 7B) (Bhardwaj and Cingolani, 2010; Cingolani et al., 1999). These 
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observations provide structural evidence that suggests a common evolutionary origin for the 

NPC and its soluble transport machinery.

NPCs are modular structures with multiple forms in yeast nuclei

Structural conservation of the inner ring contrasts with an expanding list of NPCs from 

species with different configurations of the outer rings. These differences are achieved by 

altering the copy number of Y-complexes, by adding side-specific Nups, and by repurposing 

Nups for structural roles in the outer rings (Kim et al., 2018; Kosinski et al., 2016; von 

Appen et al., 2015). In this study, we asked the following: are all NPCs in the same nucleus 

fundamentally the same? Remarkably, the answer is “no.” When taken together, the data 

suggest that at least three NPC isoforms coexist in yeast (Figure 7C). The NPC is a modular 

assembly with a “Lego”-like ability to have major scaffold elements added, reorganized, 

and/or removed. Differences in the number of outer rings could affect the rigidity of the 

scaffold; this property may be adapted to the requirements of a particular cell type and 

organism or even a distinct region at the NE. These structural variants may represent NPCs 

that are specialized in transporting specific cargos or in performing transcriptional control 

and directing chromatin organization (Fernandez-Martinez and Rout, 2021; Sumner and 

Brickner, 2021). In addition, the nuclear double outer ring may provide anchor sites for 

regulatory factors, interact with the NE to stabilize the pore membrane, and contribute to the 

functional asymmetry of NPCs.

Dynamic alterations of the NPC may play a central role in transport

The NPC is a dynamic assembly with a range of effective diameters, and recent studies 

have revealed a large dilation of the inner ring, which creates an expanded central channel 

(Schuller et al., 2021; Zimmerli et al., 2021). Our analysis provides additional evidence 

for changes that occur during dilation. Radial movements of the spokes are coupled with 

a displacement of the pore membrane and alterations in the Pom152 ring (Figure 7D); 

these changes may reflect the transition from a relaxed to a tense configuration of the inner 

ring. We also provide insights into membrane protein interactions that anchor the inner ring 

within the membrane pore. These interactions are mediated by Pom152, Pom34, and Ndc1; 

they appear to be 2-fold symmetric in the isolated NPC but may become less symmetric 

during radial dilation. Yeast strains with Pom152 deletions are viable (Wozniak et al., 1994), 

but even so, the lumenal ring is connected to the spokes and may function like a belt to 

help limit radial dilation. Some membrane proteins can be transported between the outer and 

inner membranes through the NPC, but this mechanism remains mysterious (Antonin et al., 

2011). The gap between spokes in the dilated inner ring may provide an access point at the 

pore membrane for this transport process, but Nup170 and Ndc1 molecules may need to be 

displaced.

Our comprehensive model suggests that local duplication of Nups may play critical roles 

in NPC assembly and function. At the nuclear periphery, the basket plays a role in 

targeting and preprocessing of nuclear export complexes including messenger RNA protein 

complexes. We mapped pairs of basket anchors that extend from the nuclear outer ring. 

These features appear to follow the pattern of lateral duplication established for the core 

scaffold, and this theme may extend into the rest of the basket (Figure 7E). Since nuclear 
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baskets are present on NPCs with both single and double outer rings, their anchors must 

adapt to different ring geometries.

Finally, inner ring dilation is associated with a ~2-fold increase in the volume of the central 

channel (Figure 7D). Therefore, increased transport levels may be correlated with diameter 

changes, as observed in Xenopus oocytes (Feldherr et al., 1998) and a recent in situ study 

of S. pombe NPCs (Zimmerli et al., 2021). Dilation may also help explain changes in 

transport induced by mechanical forces (Elosegui-Artola et al., 2017; Jacchetti et al., 2021; 

Kassianidou et al., 2019). We find that the central channel is partitioned into distinct regions 

including a zone of spoke connections and a central zone of FG repeats. We suggest that 

the packing density of FG domains may be altered during inner ring dilation, as reflected 

by changes in spoke connections to these domains; this reorganization may have important 

consequences for transport. Indeed, fundamental principles that govern dynamic FG domain 

organization remain to be uncovered in this “undiscovered” country.

Limitations of the study

The current study has created a detailed molecular model of Nups within yeast NPCs, with a 

precision that is limited by the local resolution and quality of the homology models. Recent 

advances in structure prediction with deep learning methods promise to provide improved 

templates for molecular modeling of the NPC (Jumper et al., 2021). In addition, further 

work is needed to improve the resolution of major ring systems within the NPC and to 

further characterize connectors, membrane anchor complexes, the Pom152 ring, and the 

nuclear basket.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Michael Rout (rout@rockefeller.edu).

Materials availability—Yeast strains and plasmids generated in this study will be 

distributed without restriction upon request.

Data and code availability

• Cryo-EM 3D density maps and associated models have been deposited 

in the EMDB and RCSB, respectively, with accession codes EMD-24224, 

EMD-24225, EMD-24232, PDB: 7N85, EMD-24231, PDB: 7N84, EMD-24258 

and PDB: 7N9F. Integrative modeling data have been deposited in the PDB-Dev: 

PDBDEV_00000097. Fluorescence data is available at https://www.stowers.org/

research/publications/libpb-1583 and cross-linking data have been deposited at 

Zenodo (https://zenodo.org/) accession code 5721514.

• Software scripts and data for integrative modeling are available at https://

github.com/integrativemodeling/NPC_3.0.
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• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Yeast strains and materials—Unless otherwise stated, all S. cerevisiae strains used in 

this study were grown at 30°C in YPD media (1% yeast extract, 2% bactopeptone, and 2% 

glucose).

METHOD DETAILS

Immuno-purification of the endogenous S. cerevisiae NPC—Intact S. cerevisiae 
NPCs were isolated following the method described (Kim et al., 2018). To minimize 

local domain movements, purified NPCs were mildly cross-linked by the addition of DSS 

(DiSuccinimidylSuberate, Creative Molecules) to yield a final concentration of 0.5 mM and 

incubated for 30 min at 25°C with gentle agitation in a shaker (900 rpm). The reaction was 

then quenched by addition of ammonium bicarbonate to a final concentration of 50 mM. 

After Cysteine reduction, cross-linked samples were separated by NuPage SDS-PAGE (4%–

12%, Invitrogen) for quality control and concentration estimation. Gels were briefly stained 

by GelCode Blue Stain Reagent (Thermo Fisher Scientific) to enable the visualization of the 

protein complex. Aliquots of crosslinked NPCs (~0.3 mg/mL) were flash frozen and stored 

at −80°C in small aliquots in buffer: 20 mM HEPES (pH7.5), 50 mM Potassium acetate, 20 

mM NaCl, 2 mM MgCl2, 1 mM DTT, 0.1% Tween 20) supplemented with 10% glycerol. 

Samples were thawed only once prior to making grids for data collection.

Chemical cross-linking and MS (CX-MS) analysis of affinity-purified yeast 
NPCs.—NPCs were immuno-purified from Mlp1 tagged S. cerevisiae strains (Kim et 

al., 2018). After native elution, 1.0 mM disuccinimidyl suberate (DSS) was added and 

the sample was incubated at 25°C for 40 min with shaking (1,200 rpm). The reaction 

was quenched by adding a final concentration of 50 mM freshly prepared ammonium 

bicarbonate and incubating for 20 min with shaking (1,200 rpm) at 25°C. The sample 

(50 μg) was then concentrated and denatured at 98°C for 5 min in a solubilization 

buffer (10% solution of 1-dodecyl-3-methylimidazolium chloride (C12-mim-Cl) in 50 

mM ammonium bicarbonate, pH 8.0, 100 mM DTT). After denaturation, the sample was 

centrifuged at 21,130 g for 10 min and the supernatant was transferred to a 100 kDa MWCO 

ultrafiltration unit (MRCF0R100, Microcon). The sample was quickly spun at 1,000 g for 

2 min and washed twice with 50 mM ammonium bicarbonate. After alkylation (50 mM 

iodoacetamide), the cross-linked NPC in-filter was digested by trypsin and lysC O/N at 

37°C. After proteolysis, the sample was recovered by centrifugation and peptides were 

fractionated into 10–12 fractions by using a stage tip self-packed with basic C18 resins (Dr. 

Masch GmbH). Fractionated samples were pooled prior to LC/MS analysis.

Desalted cross-link peptides were dissolved in the sample loading buffer (5% Methanol, 

0.2% FA), separated with an automated nanoLC device (nLC1200, Thermo Fisher), and 

analyzed by an Orbitrap Q Exactive HFX (Pharma mode) mass spectrometer (Thermo 

Fisher) as previously described (Xiang et al., 2020; Xiang et al., 2021). Briefly, peptides 

were loaded onto an analytical column (C18, 1.6 μm particle size, 100 Å pore size, 75cμmc 
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× c25ccm; IonOpticks) and eluted using a 120-min liquid chromatography gradient. The 

flow rate was approximately 300 nL/min. The spray voltage was 1.7 kV. The QE HF-X 

instrument was operated in the data-dependent mode, where the top 10 most abundant ions 

(mass range 380 – 2,000, charge state c4 – 8) were fragmented by high-energy collisional 

dissociation (HCD). The target resolution was 120,000 for MS and 15,000 for tandem MS 

(MS/MS) analyses. The quadrupole isolation window was 1.8cTh; the maximum injection 

time for MS/MS was set at 200cms.

The raw data were searched with pLink2 (Chen et al., 2019b). An initial MS1 search 

window of 5 Da was allowed to cover all isotopic peaks of the cross-linked peptides. 

The data were automatically filtered using a mass accuracy of MS1 ≤ 10 ppm (parts per 

million) and MS2 ≤ 20 ppm of the theoretical monoisotopic (A0) and other isotopic masses 

(A+1, A+2, A+3, and A+4) as specified in the software. Other search parameters included 

cysteine carbamidomethyl as a fixed modification and methionine oxidation as a variable 

modification. A maximum of two trypsin missed-cleavage sites was allowed. The initial 

search results were obtained using a default 5% false discovery rate (FDR) expected by the 

target-decoy search strategy. Spectra were manually verified to improve data quality (Kim 

et al., 2018; Shi et al., 2014). Cross-linking data were analyzed and plotted with CX-Circos 

(http://cx-circos.net).

Mapping Nic96 interactions with Nup188/192 by in vitro reconstitution—Full 

length (FL) Nic96 along with C- and N-terminal truncations were constructed and purified 

as previously described (Fernandez-Martinez et al., 2012; Kim et al., 2018). Affinity purified 

and natively eluted full length Nup188 and Nup192 (Fernandez-Martinez et al., 2012) were 

incubated with the indicated affinity matrix-bound Nic96 complexes in binding buffer (20 

mM HEPES-KOH pH 7.4, 50 mM potassium acetate, 20 mM sodium chloride, 2 mM 

magnesium chloride, 0.1% Tween-20, 1 mM DTT, 1/250 cOmplete ™ protease inhibitor 

complex (Sigma-Aldrich)) for 1 h at 4°C. After appropriate washes, the bound complexes 

were resolved by SDS-PAGE and stained with Coomassie R-250.

Quantitative fluorescence imaging—Standard PCR techniques were used to generate 

strains expressing C-terminally tagged Nup fusion proteins. The outer ring component 

Nup84 was tagged with the GFP1–10 fragment of split-GFP, and plasmids expressing 

GFP11 reporters localized to the nucleoplasm (GFP11-mCherry-Pus1) or outer nuclear 

membrane/ER (GFP11-mCherry-Scs2-TM) were used to reconstitute GFP fluorescence and 

visualize rings on the nucleoplasmic and cytoplasmic faces of the NPC independently. 

Nic96-mTurquoise2 was used to detect and segment NPCs during analysis (see below).

Cells were grown in synthetic complete media lacking leucine (SC-leu; 6.7 g Yeast Nitrogen 

Base without amino acids, 2.0 g SC-Leu supplement mixture (Sunrise Scientific), 2% 

Glucose, pH 5.8) overnight at 30°C, back diluted and grown to an OD600 of 0.6–0.8 prior to 

harvesting. Cells were then pelleted for 3 min at 3000 × g and resuspended in 1 mL of 4% 

paraformaldehyde, 100 mM sucrose and fixed for 15 min at room temperature. Following 

three washes with 1 mL 1×PBS, the cell pellet was resuspended in 20 μL Prolong Diamond 

mounting media (Invitrogen) and slides were prepared by applying 3 μL of cells between 
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slides and number 1.5 glass coverslips. Slides were cured overnight at room temperature and 

stored at 4 degrees until imaging.

Image stacks covering the entire nuclear volume were acquired with sub-Nyquist sampling 

and 0.126–0.220 nm step sizes on a Leica SP8 confocal microscope equipped with a HC PL 

APO CS2 100×, 1.40 NA objective. 458 nm, 496 nm and 561 nm lasers were used to excite 

mTurquosie2, rGFP and mCherry respectively, and emission for the corresponding channels 

were in the ranges of 463–495 nm, 505–550 nm and 566–660 nm. The pinhole size was set 

to 0.6 Airy unit to increase resolution, and raw images were automatically processed with 

default HyVolution settings. Individual nuclei were manually cropped from deconvoluted 

image stacks and analyzed with custom plugins written in ImageJ (NIH). Downstream 

analysis and data visualization was performed using R (v. 3.6.1) and RStudio (v. 1.1.442). 

All original data and custom code used for analysis can be accessed from the Stowers 

Original Data Repository at https://www.stowers.org/research/publications/libpb-1583.

NPCs were detected in three dimensions using a “track max not mask” approach. Briefly, 

the brightest voxel in the image was found and a spheroid with a diameter of 12 pixels 

in x and y and 3 slices in z was masked around that voxel. This process was repeated 

until no voxels were left unmasked above 20% of the maximum intensity in the image. 

Next the average intensities of these presumptive NPCs were measured with a spheroid of 

diameter 8 pixels in x and y and 2.5 slices in z. Average intensity measurements for each 

image and channel were normalized to the average NPC intensity for the entire image. 

After normalization, foci with an intensity less than 0.35 in the Nic96-mTurqouise2 channel 

were removed to avoid poorly detected NPCs and background regions. For analysis of 

Nup84 levels with respect to Mlp1 intensity, NPCs were classified as either “high” or 

“low” based on whether the normalized Mlp1-mCherry intensity was above or below the 

mean Mlp1 intensity (1.0). The ratio of Nup84-rGFP to Nic96-mTurqouise2 was used for 

measurement purposes as it corrects for potential detection efficiency issues that are shared 

across fluorescence channels.

Cryo-EM single particle data collection and movie processing—Sample grids 

were optimized to obtain a range of NPC views with a high loading; thus, particles were 

adsorbed on a carbon film overlayed onto Quantifoil 400 mesh carbon holey grids (2/2, 

hole diameter 2.4 uM). Grids were glow discharged followed by an extended floatation with 

carbon side down on 5 μL drops in a humid chamber. This was followed by 3 stepwise 

transfers onto 20 μL drops of blotting buffer (NPC buffer without glycerol) supplemented 

with 0.1% DeoxyBigChaps (wt/wt), while keeping the backside of the grids dry. Each grid 

was mounted in a Mark III Vitrobot at 10°C and 100% relative humidity, blot buffer was 

removed with a manual blot from the bottom edge of the grid through a side port in the 

humid chamber; an appropriate volume of blot buffer was pipetted immediately onto the 

grid, which was double blotted and plunge frozen in liquid ethane cooled by liquid N2.

Super-resolution movies were collected as LZW compressed tiffs (2 movies per hole, 4015 

in total) using SerialEM (Mastronarde, 2005) on a Titan-Krios at 300 kV with a K2 Summit 

direct electron detector (Cryo-EM Core, University of Massachusetts Medical School). A 

physical pixel size of 2.66 Å (corrected magnification 37,651) was used to target the 6–9 
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Å resolution range (~1100 Å diameter by 600 Å height). To check particle distribution 

and contamination, a script written by Dr. Chen Xu was used to automatically collect test 

images that covered ~9 holes at 200 um defocus from each candidate grid mesh with the 

attached CCD. Medium magnification montages were then collected for good meshes at a 

much lower dose to minimize total exposure. Navigator parameters were set to have 6–7 

groups of holes per mesh, with one focus spot per group using an in-house script. For the 

movies, 40 frames were collected with 0.5 s exposure/frame, a total dose of 40 e/Å2 and a 

calculated defocus range of −1.5 to −3.8 um with a K2 Summit direct electron detector in 

super-resolution counting mode (Gatan Inc.) with a Bioquantum GIF and 20eV slit width. 

Image quality was monitored “on the fly” using a script (written by Dr. Chen Xu), which 

does local motion correction with IMOD (Kremer et al., 1996) on the imaging computer and 

creates power-pair jpegs with a motion-corrected micrograph image paired with the fitted 

power spectrum from CTFFIND4.

After data collection, movies were decompressed, gain corrected and aligned with 

Motioncor2 (v1.2.3) (Zheng et al., 2017) to produce dose corrected micrographs, which 

were used to estimate per micrograph contrast transfer function (CTF) parameters with 

GCTF (Zhang, 2016). Manual triage was done with Motioncor2/GCTF power-pairs using 

the “eye of Gnome” viewer (eog) and awk scripts to eliminate poor micrographs (3218 

remained; ~80%). After parameter optimization, NPCs were picked with Gautomatch 

(https://www.mrc-lmb.cam.ac.uk/kzhang/) using an image stack of equi-spaced projection 

views that were calculated from our tomographic model with C8 symmetry ((Kim et al., 

2018); EMD-7321) using EMAN2 (e2project3d.py (Tang et al., 2007)). For initial screening, 

particles were extracted in 310 × 310 boxes with a pixel size of 5.32 Å to remove outliers 

with 2D and 3D Maximum likelihood-based classification in RELION 2.0 (Scheres; 2012), 

which resulted in 26049 selected NPCs.

Single particle processing

Spokes and co-axial rings-: To evaluate the overall quality and angular coverage, the 

dataset was processed initially with particles extracted at 5.32 Å/pixel. Refinements with C8 

symmetry and a low pass filtered starting model from tomography (Kim et al., 2018), gave 

a structure with RELION that was virtually identical to the published map but with many 

more features (global resolution 24 Å). Subsequent refinements with imposed C8 symmetry 

used particle images after subtraction of the central transporter density and local soft masks 

that focused respectively on the inner ring and each of the two distal ring features. This 

resulted in a composite 3D map with a local resolution range of 14.4 to 30 Å in which 

features of the double outer ring began to emerge.

For multi-body refinements with density subtraction, we started with particles at 5.32 Å/

pixel and after test refinements in RELION 3.0 (Nakane et al., 2018), re-centered NPCs 

were extracted at 2.66 Å/pixel in 620 × 620 boxes. In brief, we divided the processing into 

two sequential multi-body cycles to avoid memory limitations due to the requirement for 

multiple masks, coupled with the large box size of the particles (Methods S1). The first cycle 

identified the best protomers and was centered on ~1.5× subunits within the full particle 

in the original box, wherein a subunit is comprised of a spoke and distal ring “features” 
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located on either surface. Following subunit extraction and re-centering within a smaller 

box, a second multi-body refinement step focused on three regions within the protomer. 

Refinements in which masks were centered on the spoke 2-fold axis were of noticeably 

higher quality than those centered on the 2-fold axis that passes between spokes. To start, we 

expanded particle line entries in the consensus C8 alignment star file for the full NPC, by 

duplicating every particle line entry 8x with a cyclic permutation of the first Euler angle in 

45° increments (relion_particle_symmetry_expand). This 8-fold expanded particle star file 

and the original image stacks were used in a C1 refinement with a 1.5x spoke mask to bring 

each protomer into a common alignment.

For the first multi-body refinement step, we created a soft mask that covered the remaining 

protomers (~6.5x) in the ring-like particle, along with the central transporter using a C8 

symmetrized 3D map and then subtracted the density within this mask from the particle 

stack in each refinement iteration by using a zero alignment flag in the multi-body star 

file. After refinement, density subtracted image stack files for the entire ~1.5x protomer 

were written out and used for focused 3D classification with local refinements to eliminate 

any remaining damaged subunits. A local C1 consensus refinement was then done for the 

re-centered and density subtracted protomers, which were subjected to a second round of 

multi-body refinement with three overlapping masks that covered the spoke and each outer 

ring. We then focused on the spoke and appropriate images were re-extracted and a local 

3D classification with a soft mask was run (+/− 9 degrees) to further clean the dataset. 

Refinements with C1 symmetry and a mask produced a map for the spoke at ~8 Å resolution 

(local range 7.9–11Å ).

NPCs were imaged on a thin carbon support film that dominates the CTF estimation and 

this value reflects a particles position along the optical axis relative to true focus. Hence, 

the median value of the CTF for the particle center is dependent on its orientation on the 

carbon film. For the NPC, this offset will become more significant at higher resolution. We 

created a script based on the geometry of the particles and the Euler angles (Liu et al., 

2019) to calculate the z-offset (median defocus change) to each NPC center. An ambiguity 

in sign and thus, the direction of z-change was resolved by carrying out two separate 3D 

refinements with all per particle CTF values calculated with the same directional offset: the 

resolution of the final map was used as an indicator of the correct orientation. This resulted 

in a refined spoke 3D map with an improved local resolution range (corrected 6.6–11 Å), 

but the median FSC0.143 improved by only 0.1 Å with a larger mask. Per particle CTF 

corrections improved the best ordered, central 60%–70% of the map, while more peripheral, 

flexible regions were slightly worse, accounting for the small global change in FSC0.143. 

This spoke map was 2-fold symmetrized and normalized in EMAN2 (e2proc3d.py–process 
= normalize.local), which allows densities across the map to be represented more equally at 

a single threshold.

A similar two-step multi-body approach with particles at 3.99 Å/pixel was used to process 

the outer ring with a cobra hood shape and revealed a double outer ring of Nup84 Y-

complexes. We found that overlapping V-shaped regions from Nup120, Nup85 and Seh1 in 

two offset Nup84 complexes were combined to create the hood shape in the original 3D 

maps. In the second round of multi-body refinement, two masks were applied to the image 
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stack with density subtracted transporter; the zero subtraction mask contained the inner ring, 

membrane density and Nup82 complex density, while the second alignment mask covered 

~1.5x subunits in the double outer ring. After re-extraction of centered outer ring particles, 

3D classification with tau 8 and local refinement in multiple steps with gradually improved 

masks identified particles with a double outer ring (~20%) and gave a final 3D map with a 

global resolution of ~11.3 Å using a generous mask.

Maps from final refinements for the spoke and double outer ring were cloned to create 8 

copies and aligned within the best 3D density map of the full NPC in Chimera (Pettersen 

et al., 2004), rotated appropriately and added together to create complete rings. A visual 

inspection with docked models in Coot did not reveal anomalous features at subunit 

boundaries in the reassembled 3D maps at the current resolution. Final 3D maps were 

masked in EMAN2 and dusted in Chimera to remove noise. The cytoplasmic outer ring 

could not be improved with a multi-body approach due to its flexibility. The structure 

determination for the inner ring and double outer rings is summarized in Methods S1 and 

Table S1.

Central transporter and spoke connections—The central transporter and spoke 

connections were analyzed separately; an image stack at 5.32 Å/pixel was used for a C8 

refinement in RELION. To focus on the transporter, a 3D classification with 8 classes was 

done with the skip_align option and a mask which included the central transporter and a 

small region of the surrounding spoke. Two classes with low density were eliminated and 

the remaining 6 classes were grouped together, auto-refined and post-processed. To focus 

on connections between the spokes and transporter, a 3D classification with 6 classes was 

carried out with skip_align and a mask that eliminated the central region of the transporter, 

both distal rings and part of the membrane remnant. Particles in the two best classes were 

merged, auto-refined and post-processed with C8 symmetry. Unfortunately, signal for the 

lumenal Pom152 ring was too delocalized to identify a better ordered subset with 3D 

focused classification in the isolated NPC.

Modeling the spoke and double outer ring—We started with an integrative model 

of the yeast spoke (PDBDEV_00000012) that was based on ~25 crystal structures (Kim 

et al., 2018) and docked 28 Nups within the spoke 3D density map as rigid bodies in 

Chimera. We then used manual modeling in Coot (Casañal et al., 2020), Chimera (Pettersen 

et al., 2004), Phenix realspace_refine (Afonine et al., 2018) and molecular dynamics flexible 

fitting (MDFF; (Trabuco et al., 2008)) to create a model based on a majority of the ~715 

ɑ-helices within the spoke. We included flexible connectors from N-termini of four Nic96 

molecules and 2 orphan helices to give 26 novel ɑ-helices and 4 strands, along with tail 

domains with altered conformations from six Nups (two copies each of Nups 192, 188 and 

170); the full spoke model contains ~15,600 residues in the ordered domains (~1.69 MDa).. 

A novel Integrative threading was used to position sequences of Nic96 N-termini within the 

orphans (see below, (Saltzberg et al., 2019)), which was followed by an additional round of 

refinements to create a final model (PDB 7N85; EMD-24232). Nup domains in the structure 

have undergone local movements and re-arrangements with an average Cα rmsd of ~8Å, 

when compared to an earlier integrative model of the spoke (Kim et al., 2018), with larger 
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changes at Nup contacts and due to rearrangements of the Nsp1 complex. For the double 

outer ring, 14 Nups were docked into the repeating unit (~1.1 MDa) using yeast homology 

models based on 5 crystal structures (Kelley et al., 2015) that were split into 22 domains 

with a total of ~10,000 residues. The improved resolution allowed us to model complete 

paths for two Y-complexes within the double ring along with a copy of Nup188 and a 

putative basket anchor in a rod-like orphan density. Initial models were subjected to manual 

remodeling in Coot, Chimera, and refinements with Phenix realspace_refine (while ensuring 

that perturbations of the β-propellers did not occur from over-refinement). Final fitting steps 

used MDFF: a gscale value of 0.6 was used for medium resolution models (7–10Å), while 

flexible fitting into lower resolution maps used values of 0.15–0.3. Typical restraints were 

used for protein geometry in refining the double ring model (PDB 7N84, EMD-24231).

Mapping cross-links to the NPC structures—A total of 2,053 DSS and EDC 

crosslinks were obtained previously for the isolated NPC (Kim et al., 2018). To assess 

whether the crosslinks agree with the NPC’s structure, these crosslinks were mapped on 

to the cryo-EM structure by determining the Cα–Cα distance of crosslinked residue pairs. 

A DSS or EDC crosslink was classified as satisfied by the structure if the corresponding 

Cα–Cα distance is less than 35 or 30 Å, respectively (Figure S5B–S5E) (Kim et al., 2018).

Initial model for 30 orphan densities within the spoke—At this stage, a total of 

30 orphan densities were identified in the spoke that likely arise from N-termini of Nic96 

and Nup53/Nup59, functional orthologs of CtNup53 and possibly from other Nups. We 

identified 20 orphans combined in the two diagonal walls. In addition, 10 orphan helices 

are associated with two copies Nup192 and two copies of Nup188. Physical, biochemical 

and structural restraints were used to create an initial model for connectors in the orphan 

densities. Previous work showed that a large connector is present in the N terminus of 

CtNup53 which interacts with the NTD of Nup192 (Lin et al., 2016). We observed a 

long helix associated with the NTD of Nup192 that may be attributed to Nup59 because 

this protein interacts with Nup170 and Nup192 in pullout experiments and behaves like 

CtNup53. This left 28 orphans in a spoke that may be contributed by connectors from four 

Nic96 N termini.

The Nic96 N terminus contains 204 residues, so the sum of orphan structural elements 

+ connector residues in each modeled chain should not exceed this value. Moreover, the 

distance between diagonal walls is too great to allow a single Nic96 N terminus to be located 

in both walls. Previous work identified two conserved sequence motifs in the N-termini of 

Nic96 and its homolog, Nup93 that interact with Nsp1 and p62 complexes, respectively 

and with the C-terminal tails of Nup188 and Nup192/Nup205 (Lin et al., 2016). The 5 

orphans in each diagonal half-wall are present in two groups with linker density visible at 

a lower threshold for some pairs: a group of three structural elements (two helices and a 

strand) and a group of two helices. After manual docking of poly-Ala ɑ-helices and strands 

in Chimera and Coot, we found that the topology of the group of 3 structural elements is 

similar to the helix-strand-helix motif of a Nic96 SLiM observed in a crystal structure with 

a Ct-Nsp1 heterotrimer ((Stuwe et al., 2015); PDB 5CWS; Figure S5F). Structure prediction 

of the Nic96 N terminus also suggested that two helices may be positioned between the 
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group of 3 structural elements and a pair of helices located near the end of the NTD that 

are bound to Nup192 or Nup188. The final pair of connectors from the innermost copy of 

Nic96 may interact with a CTD of Nup192 while these connectors from the outer copy of 

Nic96 probably bind to the Nup188 CTD. Manually docked helices and strands were refined 

with Phenix realspace_refine (Afonine et al., 2018) and these coordinates were used as input 

to an integrated threading approach to test all possible structure element orientations and 

sequences from Nups as connectors within the orphan densities; this analysis did not use the 

crystal structure of the Nic96 SLiM (Stuwe et al., 2015).

Integrative threading of Nup sequences into spoke orphan structure elements
—A novel integrative threading approach (Alber et al., 2007a; Kim et al., 2018; Rout and 

Sali, 2019; Russel et al., 2012; Saltzberg et al., 2019) was applied to determine the protein, 

its copy identifier, and the sequence of orphan structure elements (SE) in the inner ring. All 

possible arrangements derived from the spoke C2-symmetry were considered, but only one 

resulted in a model that sufficiently satisfied the input data: this option splits the 30 orphan 

densities into two symmetric subsets of 15 orphan densities each. Integrative modeling 

proceeded through the standard four stages, as follows:

Stage 1 - Gathering information: The data used for integrative structure modeling 

is summarized in Table S2, which is available on-line (https://zenodo.org/record/

5721514#.YcY9laROlhE), record number 5662389.

Stage 2 - Representing subunits and translating data into spatial restraints: We 

represent the NPC model using a threading representation. The representation defines the 

degrees of freedom of the model whose values are fit to input information.

Threading representation.: We first identified a total of 30 orphan densities in the inner-ring 

cryo-EM density map. These densities most likely correspond to distinct SEs, including 

ɑ-helices and β strands. A poly-Ala sequence of suitable length was manually fit into each 

rod-like orphan density, followed by refinement using Phenix realspace_refine as described. 

Each SE is defined by four degrees of freedom that map it to specific residues in the 

sequence: 1) Start Residue, defining the first residue in the sequence to which the SE is 

mapped; 2) Length, the number of residues in the sequence overlapping with the SE; 3) 

Offset, the index of the first SE residue that is assigned to the sequence; and 4) Polarity, 

which defines the direction of the mapping between the SE and the sequence (Figure S4C).

Coarse-grained structural representation of the NPC scaffold.: If an atomic structure of a 

protein segment is present in the isolated NPC structure described above, it was represented 

by the corresponding rigid body configurations of a fine- and coarse-grained representation 

of 1- and 10-residue beads, respectively (Table S2, (Kim et al., 2018), references therein).

Scoring function for threading representation.: Alternative models are ranked via a scoring 

function. The scoring function is a sum of terms, each one of which restrains some aspect 

of the model based on a subset of input information (e.g., stereochemistry, crosslinks, 

sequences). We impose three scoring terms that restrain the four degrees of freedom 

(Saltzberg et al., 2019) for each of the 30 SEs. First, the secondary structure restraint is 
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computed by comparing the secondary structure assignment in the model with the secondary 

structure propensity predicted from the input sequence. Second, the loop end-to-end distance 

(i.e., C- to N-termini distance between two sequentially adjacent SEs) restraint relies on 

the relationship between the model loop length and its end-to-end distance as derived from 

the CATH 3D structural database. Third, the SE crosslinking restraint corresponds to a 

harmonic upper-bound on the distance spanned by two cross-linked residues. When one 

or both crosslinked residue(s) have undefined position(s), we compute the distance from 

inferred localization volumes.

Stage 3 - Enumeration of threading solutions to produce an ensemble of structures 
that satisfy the restraints: Sequences from appropriate Nups were threaded through the 

backbone of the 30 SEs in a spoke. We improved the efficiency of threading by explicitly 

considering the C8- and C2-symmetries of the inner ring (Figure 2B).

Symmetry: We defined the coordinate system such that the C2-symmetry is imposed simply 

by cloning a bead in the C2-symmetry unit at (x, y, z) to (x, −y,−z) (equivalent to a rotation 

of 180° around the x axis). In addition, a second 2-fold axis was considered for sequence 

threading of the orphan densities (Figure S3C). Based on symmetry, we grouped the SEs 

into five groups: 1) SEs 1–3 that bind to the Nsp1/Nup49/Nup57 coiled-coils, 2) SEs 4 

and 5 that localize between copies of the Nsp1/Nup49/Nup57 coiled-coils, 3) SE 6 that 

binds to the Nup188 CTD, 4) SE 6 that binds to Nup192 CTD, and 5) SE 7 that binds 

the Nup192 NTD (Figure S3B). All possible symmetry arrangements derived from the 

spoke C2-symmetry were considered, such that 30 orphan SE were split into two symmetric 

subsets of 15 SEs each.

Threading enumeration.: We constructed all possible sequence assignments of a subset 

of sequences to positions of the SEs by enumerating of the threading degrees of freedom. 

The subset of sequences included Nic96 (residues 1–205), Nup53 (residues 1–247), Nup59 

(residues 1–265), Nup100 (residues 551–815), Nup116 (residues 751–965), and Nup145N 

(residues 201–458). These segments correspond to regions that have previously been 

modeled as flexible beads and do not contain FG repeats (Table S2) (Kim et al., 2018). 

The enumeration begins by assigning a protein identity and copy number to each of the five 

SE groups. Next, the scoring function is evaluated for all possible assignments of the four 

SE keys described above. For each SE group, identical keys are applied to all symmetry 

copies of the group (Figure S4).

Stage 4 - Analyzing and validating the model ensemble: Model validation follows five 

steps (Sali, 2021; Saltzberg et al., 2021; Viswanath et al., 2017): (i) selection of models 

for validation; (ii) estimation of sampling precision; (iii) estimation of model precision, (iv) 

quantification of the match between the model and information used to compute it, and (v) 

quantification of the match between the model and information not used in the computation. 

Next, we discuss each one of these validations separately.

i. Model selection. Models were filtered to find those that sufficiently satisfy 

the input information; a secondary structure restraint is satisfied if the 

RaptorXProperties score for the sequence-to-SE mapping is higher than 0.6; 
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a loop end-to-end distance restraint is satisfied if the distance between the 

termini of two sequential SEs is violated by less than 3 times the standard 

deviation parameter used to evaluate the restraint; similarly, a crosslink restraint 

is also satisfied when an evaluated distance is violated by less than 3 standard 

deviations.

ii. Sampling precision. Because threading solutions were enumerated, no sampling 

precision needed to be calculated.

iii. Model precision. Model precision (uncertainty) is defined by the variation among 

the filtered models; the precision of each SE in each cluster was assessed by 

computing the standard deviation of its starting residue over all models in the 

cluster.

iv. Information used in modeling. By selection, filtered models satisfy the input 

information.

v. Information not used in modeling. Perhaps the most convincing test of a model 

is by comparing it to information not used in the computation (a generalization 

of cross-validation). We compared the structure of the Nic96 NTD bound to 

the Nsp1/Nup49/Nup57 coiled-coil domain to the X-ray structure of the same 

sub-complex from Chaetomium thermophilum (Stuwe et al., 2015) (Figure S5F). 

Additionally, the mapping of known Nic96 NTD phosphorylation sites from 

different species to the integrative threading model rationalized how these site 

modifications might regulate NPC disassembly and reassembly (Figure S5A), 

further increasing our confidence in the modeling. Phosphorylation sites were 

retrieved from the PhosphoSitePlus server (Hornbeck et al., 2015), a manually 

curated database of experimentally confirmed phosphorylation sites. Finally, the 

models are consistent with biochemical considerations as described in the initial 

modeling section (Lin et al., 2016)

Docking the yeast spoke into human and algal NPC 3D density maps—Previous 

work has shown that the overall architecture of the spoke is conserved based on comparisons 

of low resolution spoke models that were built with Nup homology models and crystal 

structures, which were docked into alga/human and yeast/human tomographic 3D density 

maps (Kim et al., 2018; Mosalaganti et al., 2018). To do a systematic comparison and to 

validate our new models, we docked yeast spoke models from contracted and expanded 

inner rings into available 3D maps for the isolated human NPC in nuclear envelopes 

(EMD-3103; (von Appen et al., 2015)) and the in situ algal NPC, respectively (EMD-4355; 

(Mosalaganti et al., 2018)). The appropriate yeast spoke model was docked with Chimera 

(Pettersen et al., 2004) into the 3D density map with a similar conformation for the inner 

spoke ring. Docked models were then refined within the density maps with MDFF (Trabuco 

et al., 2008) and a gscale of 0.3 for 150–250 ps with restraints for secondary structure, 

cispeptides and chirality. The rmsd between the original, manually docked and MDFF 

refined models was 13.4 Å for the isolated yeast spoke docked into the human NPC 3D 

density map and ~9.1 Å for the in situ yeast spoke docked into the algal in situ density map 

(after excluding Nup170 for the latter comparison) (Figure S8). This cross-species docking 
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shows that density maps for human and algal spokes are consistent with many structural 

features of the yeast spoke.

In situ tomography of S. cerevisiae NPCs- data collection and pre-processing
—W303 yeast cells were harvested during log-phase growth and diluted to an 0.8 × 107 

cells/mL in YPD media. Five μL of this diluted sample was applied to glow-discharged 200-

mesh, Quantifoil R2/1 grids (Electron Microscopy Sciences), excess media was manually 

blotted from the grid back side (opposite to the carbon substrate where the cells were 

deposited) and the grid was plunge frozen in a liquid ethane-propane mixture (50/50 volume, 

Airgas) using a custom-built vitrification device (Max Planck Institute for Biochemistry, 

Martinsried). Frozen grids were clipped into AutoGrids with a notch to allow milling at 

shallow grazing angles (Thermo Fisher Scientific). The cryo-FIB milling was performed in 

an Aquilos DualBeam (Thermo Fisher Scientific). Clusters of a few yeast cells were marked 

for milling at an angle of ~11–14° (corresponding to stage tilts of 18–21°). Lamellae of 

~11–18 μm in width and thicknesses ranging from 120 to 180 nm were prepared using 

rectangular milling patterns as noted previously (Wagner et al., 2020).

Grids containing lamellae were loaded into a Titan Krios G3 (Thermo Fisher Scientific) 

operated at 300 kV. First, lamellae were identified in low magnification TEM images 

and their coordinates were stored. At a nominal magnification of ~2250X or 3600X, the 

eucentricity at each of the lamellae coordinates was determined and another set of images 

at a nominal magnification of 8700X was used to generate montages of each lamella 

in SerialEM (Mastronarde, 2005). The nuclear membrane and NPCs were identified and 

marked in these montages as targets for data acquisition. Tilt series were acquired on 

the Krios equipped with a post-column energy filter and a K2 Summit direct detector 

in counting and dose fractionation modes (Gatan). Typical tilt-series parameters were as 

follows: tilt range: ~ ± 60°, nominal magnification 42000X, tilt increment 3°(4–5° for 

some samples), pixel size of 3.43 Å and an effective defocus range of −2 to −11 μm. 

All image-acquisition was done using SerialEM software (Mastronarde, 2005) (Table S1). 

Frames of the tilt-series movies were motion-corrected using Motioncorr2 (Zheng et al., 

2017). Non-dose weighted and motion-corrected image stacks were imported into EMAN2 

for subsequent processing, including CTF estimation, reconstruction, subtomogram, and 

sub-tilt refinement (Chen et al., 2019a).

Subtomographic analysis of in situ NPCs—Data processing, beginning with 

collected tilt series, followed the standard subtomogram analysis workflow in EMAN2.9 

(Chen et al., 2019a). Briefly, a few tilt series were automatically reconstructed at 4x down-

sampling (1k × 1k × 512). Automatic CTF processing was used to check handedness and 

determine the correct choice of tilt-axis. Once the tilt axis was determined, all tilt series 

were automatically aligned and reconstructed at 4x down-sampling using e2tomogram.py 

followed by automatic, tilt-aware CTF determination. NPCs were manually selected from 

930 tomograms, avoiding partial NPCs that were cut by the FIB milling, yielding 518 

particles. Complete NPCs were re-extracted and reconstructed from the raw tilt series at 2x 

down-sampling (6.9 Å/pix). The relatively low yield resulted from a compromise between 
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preparing thin lamella to increase data quality and the goal of including complete NPCs, 

which are comparable in diameter to the optimal lamella thickness.

Numerous alignment runs were completed on whole NPCs and on individual protomers 

with a variety of different focused masks to identify regions of high variability and to 

determine the optimal approach for final refinement. In the end, we used a single mask 

centered on a protomer without additional focused refinements. For the final refinement 

NPCs were iteratively and globally aligned. The final alignment soft mask covered the spoke 

ring extending into the membrane and included parts of the cytoplasmic and nucleoplasm 

rings. Then, 8-fold symmetry was imposed, considering the clear symmetry in the scaffold 

of the NPC. Based on the alignment, NPCs were mapped back into the tomograms. A 

few misaligned particles (24) were found to lie outside the plane of the nuclear envelope, 

and were discarded. During alignment, other particles were placed with the cytoplasm and 

nucleoplasm inverted; these particles (91, ~18%) were flipped. This was followed by another 

round of whole-NPC alignment with rotation and translation constrained to 10 pixels and 24 

degrees of rotation in all three Euler angles.

Final NPC orientations from this refinement were used to extract 8 protomers from each 

NPC (C8 symmetry expansion), each in a box large enough to contain all of the density 

in a 90 degree wedge (one protomer plus two halves), centered on a spoke and extending 

just past the center of the NPC. These 3656 particles, which were pre-aligned based on 

the overall NPC alignment, were then iteratively refined using a single alignment soft 

mask focused on the spoke and outer rings. This protomer alignment was constrained to a 

maximum of 5 degrees of rotation and 8 pixels of translation per iteration with a classkeep 

of 0.8 (an EMAN parameter to limit the fraction of particles to include in the average for the 

next iteration). The final average was performed under a simple spherical mask extending 

well into the membrane. Per-particle and per-tilt CTF refinement did not yield useful results 

for the NPC, presumably due to the inherent flexibility and the small number of particles.

Local resolution was estimated using the EMAN2 implementation of mFSC (Penczek, 

2020) following the ‘gold standard’ refinements and indicates a range of 30–50 Å in the 

spoke, outer rings and Pom152 domains. Maps were locally Wiener filtered as part of the 

mFSC calculation, which computes an FSC curve for every voxel in the map (Figure S7A, 

S7B). Reliable visual detail (comparison of even/odd maps) matches or exceeds that of 

EMD-10198 for the yeast NPC, which claims 25 Å resolution. We hypothesize that this 

difference is due to masking used in the earlier structure, but cannot assess this as even 

and odd maps were not deposited. Furthermore, we provide a direct comparison of our 

tomographic 3D map with selected views of EMD-10198 (Figure S7C, S7D). As reported 

in this work, additional peripheral features are clearly resolved in our 3D map including: 

connections from Nsp1 complexes in the spoke and from the Nup82 complex, along 

with orphan densities and basket anchor complexes on the nuclear outer ring, improved 

Pom152 ring density and spoke contact sites on the pore membrane. These differences may 

arise from masking steps required to divide the protomer into three overlapping regions 

for separate alignments and from local filtering and reassembly of the C8 protomer that 

occurred in previous work (Allegretti et al., 2020), whereas we used a strategy that aligns 

the entire protomer within a wedge containing two subunits. Alternatively, the amplitudes of 
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Fourier components in this resolution range may be weak, resulting in 3D maps that may not 

differ significantly in this resolution range. In fact, some combination of these factors may 

relate to the observed differences in estimated resolution.

Refinement of the Pom152 ring from the in situ NPC—The NPC is an intrinsically 

flexible assembly, and refinements of one segment may smear out the density of other 

segments. To refine the Pom152 ring, the 3656 C8 protomers, as described above (pre-

aligned based on the overall NPC alignment), were iteratively refined using a soft alignment 

mask that focused on the double nuclear membrane region. For these iterative refinements, 

the rotation and translation of the pre-aligned protomer particles were constrained to 8 pixels 

and 5 degrees of rotation in all three Euler angles. The final average was performed under 

a simple soft mask that covered the entire asymmetric subunit of the protomer and extended 

into the membrane regions.

Composite maps and modeling the in situ NPC—The final 3D density map for 

the in situ NPC was used to create models for spokes in the inner ring and for Nup84 

Y-complexes in the outer rings, using methods already described. In this synergistic analysis, 

the inner and outer rings were modeled as rigid bodies, starting with conformations observed 

in isolated NPCs, followed by manual rebuilding and a limited MDFF refinement (Trabuco 

et al., 2008). Additional components were docked manually in Chimera including: the 

Nup82 complex with 3 pairs of Dyn2 dimers bound to sequential DID repeats of Nup159 

(Romes et al., 2012) in the cytoplasmic outer ring, connections from Nsp1 in the Nup82 

complex and from Nsp1 complexes in the inner ring that extend into the central channel. 

The connection models used rods as linear markers and 14 2-helix coiled coil segments were 

used to model basket anchor densities that emanate from each Y-complex in the nuclear 

outer ring. Docked models were cloned to form complete rings and used to segment the map 

by zoning in Chimera with a 20 Å radius to capture additional, nearest neighbor densities 

and these mini-maps were used for figures. SEGGER (Pintilie et al., 2010) was used to 

segment the Pom152 ring prior to integrative structure modeling.

To compare maps of the isolated and in situ NPCs segmented inner rings were used for an 

initial alignment. The inner ring from the isolated NPC was scaled, low pass filtered and 

boxed in EMAN2.1 to give a comparable resolution with the same pixel and box size as 

the inner ring in the in situ 3D map. Both inner rings were then aligned for D8 symmetry 

(which is approximate for the in situ inner ring) with e2symsearch3D.py, and the spoke 

2-fold along the x axis. The 8-fold symmetrized, inner ring for the in situ NPC was then 

aligned to the D8 symmetrized map from this feature to create mutually-centered 3D maps 

for the two configurations. Outer rings were then placed in the correct orientation relative to 

their respective, aligned inner ring maps in Chimera.

Integrative modeling of the lumenal Pom152 ring—Integrative modeling of the 

Pom152 ring in isolated and in situ NPCs proceeded through the standard four stages as 

described above (Alber et al., 2007a; Kim et al., 2018; Rout and Sali, 2019; Russel et al., 

2012). The data used for integrative structure modeling of the Pom152 rings is summarized 

in Table S2. Each the 10 Pom152 Ig-like domains was represented as a rigid body using 

a 1-residue-per-bead representation; all other regions were represented as flexible strings 
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of beads (Table S2). We modeled 6 copies of Pom152 spanning 3 spokes. The scoring 

terms that restrain the spatial degrees of freedom included: first, cross-link restraints based 

on total of 1425 DSS and EDC. The same set of cross-links was used for modeling the 

isolated and in situ Pom152 ring because only small conformational changes are expected 

(Chen and Rappsilber, 2019). Second, the EM density restraint corresponding to a cross-

correlation between the Gaussian Mixture Model (GMM) representation of the Pom152 

subunits and the GMM representation of the cryo-EM or FIB-milled cryo-ET density maps 

for the Pom152 ring (i.e., EM maps; Table S2) (Bonomi et al., 2019); third, transmembrane 

domain restraints that localize the coarse beads in the predicted transmembrane domains 

(Pom152111–200) within the pore membrane (Kim et al., 2018); fourth, Pom152 peri-

nuclear restraints applied to the CTD of Pom152 (residues 201–1337). Finally, excluded 

volume and sequence connectivity restraints were applied to all components (Kim et al., 

2018). Structural models were computed using Replica Exchange Gibbs sampling, based 

on the Metropolis Monte Carlo (MC) algorithm (Shi et al., 2014; Swendsen and Wang, 

1986). Each MC step consisted of a series of random transformations (i.e., rotations and/or 

translations) of the flexible beads and rigid bodies (Table S2). We improved the efficiency 

of structural sampling by explicitly considering the C8- and C2-symmetries of the inner 

ring. Analysis and validation of the structural models of the Pom152 rings followed the 

previously published five steps (Saltzberg et al., 2021) and results from this validation are 

summarized in (Table S2). The integrative structure modeling protocol (i.e., stages 2, 3, and 

4) was scripted using the Python Modeling Interface (PMI) package and our open-source 

Integrative Modeling Platform (IMP) package (Russel et al., 2012), version 2.8 (https://

integrativemodeling.org). Files containing input data, scripts, and output results are available 

at https://github.com/integrativemodeling/NPC_3.0 and in the worldwide Protein Data Bank 

(wwPDB) PDB-Dev repository for integrative structures (PDBDEV_00000097).

Figures—All Figure panels of cryo-EM density maps and models were created using 

Chimera (Pettersen et al., 2004).

Quantitation—Resolution of cryo-EM density maps was estimated with the FSC-0.143 

criterion (Rosenthal and Henderson, 2003). Local resolution 3D maps were calculated in 

RELION 3.0 (Nakane et al., 2018) and with mFSC (Penczek, 2020) in EMAN2 for isolated 

and in situ NPC volumes, respectively.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A comprehensive model is presented of the yeast nuclear pore complex 

(NPC)

• Connectors link together different structural and functional layers in the NPC

• Multiple structural and functional NPC isoforms co-exist in each cell

• Modular construction allows structural plasticity and inner ring dilation of the 

NPC
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Figure 1. Overview of isolated and in situ yeast NPC structures
(A) (top) Cytoplasmic and cross-section views of a composite 3D map from the isolated 

NPC: double nuclear outer ring (gold), inner ring (IR, light blue), Nup82 complex and 

cytoplasmic outer ring (tan), Pom152 ring (light pink), membrane-detergent ring (white), 

central transporter (red), and spoke-transporter connections (marked “C”).

(bottom) Three views of molecular models docked in a composite, 3D density map of 

the isolated NPC. Nup color coding is defined for spokes in Figures 2G and 2H and for 
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Y-complexes in Figure 4D. Only half of the NPC model is shown in each view and the 

Pom152 ring is marked (*).

(B) (top) Two views of the in situ yeast NPC: outer rings (OR, tan), Pom152 ring (pink), 

pore membrane (transparent white), and basket anchors (silver).

(bottom) Three views of molecular models docked in the combined 3D density map of the in 
situ NPC. Positions of Nsp1 FG domain anchor points in the Nup82 complex are indicated 

(green dots). Scale bar 200 Å.
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Figure 2. Structure of the isolated yeast NPC
(A) Composite 3D map of the inner ring and double outer rings viewed from the nuclear 

side: nuclear, double outer ring (gold), inner ring (IR, light blue).

B. The inner ring is shown with local 2-fold axes and membrane attachment complexes that 

contain Nup157 pairs, Pom152 and Pom34 (MAC157, black asterisks), and Nup170 pairs 

with Ndc1 (MAC170; blue asterisks).

(C) A cross-section of the inner ring with ɑ-helical rods throughout.
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(D) A single spoke is segmented and viewed along the central 2-fold axis to reveal the three 

major layers.

(E) A central slice through the spoke with the orientation of Figure 2H shows the gap 

between inner and outer spoke domains (ISD and OSD, respectively). Cavities are marked 

with asterisks.

(F) A central section with three docked models for the spokes and double outer ring 

(oriented as in C). β-propellers in the Y-complexes are highlighted (light blue) and the 

disordered cytoplasmic outer ring is indicated (dashed lines).

(G) Close-up of a modeled spoke viewed along the 2-fold axis. Connector helices are 

colored gold.

(H) The spoke contains two domains, as indicated by dashed lines (gap), with distinctive 

functions. The Nup color palette reflects their distribution within the inner (green), adaptin-

like (pink-red), and membrane-interacting (blue) layers.

(I) A thin slab viewed along the central 2-fold axis reveals a vertical separation of the outer 

spoke domain (dashed lines; also see Figure 3). Relevant scale bars are indicated on the 

panels.
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Figure 3. Orphans and interaction motifs for Nic96 NTDs in the spoke
(A) Nsp1 complex three-helix bundles and Nic96 NTD connectors form two diagonal walls 

(green iso-surface). Figures 3A–3D are viewed along the central 2-fold axis (marked 2 or a 

black ellipse).

(B) Nic96 connector ɑ-helices (gold and blue cylinders) form a bridge between opposing 

half walls (green); other connectors bind to 3-helix bundles from the Nsp1 complex.

(C) Connector helices and strands with overlayed map density are superimposed on Nups 

188 and 192 (white cylinders). Each Nic96 NTD forms a group of 3 elements, a group of 2 
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helices, and a pair of helices that bind to Nup188 or Nup192 CTDs. In addition, two orphan 

helices (pink) bind to Nup192 NTDs.

(D) Connector interactions are shown with Nups displayed as ribbons. Outer and inner 

Nic96 CTDs (light blue, light yellow) form keystone supports behind Nup192 and Nup188. 

Nup192 CTDs form Karyopherin-like interactions with Nic96 connector helices. Nup192 

and Nup188 NTDs are shown in white and gray, while their CTDs are color coded.

(E) A pair of Nup192 molecules with IBB-like motifs (from panel 3D) are shown after a 90 

degree rotation counterclockwise about a vertical axis.

(F) Two views of the Nup192/IBB-like motif are superimposed with the 3D density map.

(G) Left: the Nup192/IBB-like motif is shown with numbered helices (N- to C-, 1 to 12). 

Right: overlay of human Importin β co-crystal structures with IBBs of Importin-ɑ (tan, PDB 

1QGK) and Snurportin 1 (gray, PDB 3LWW). Numerals of split helices are circled.

(H) Two views of the Nup188 CTD with a pair of connector helices and the overlayed 3D 

density map. The curved Nup188 tail binds consecutive Nic96 NTD ɑ-helices in a long 

groove. Scale bars are indicated on the panels.
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Figure 4. A double outer ring in a subset of yeast NPCs
(A) The isolated yeast NPC with a double outer ring segmented into proximal (gold) and 

distal (tan) rings. Density for Nup188/192 (red) and two orphans (silver) are shown. A 

double ring protomer is outlined (dashed box).

(B) Model of Y-complexes in the double outer ring with the overlaid density map.

(C) Top: three pairs of Y-complexes from the 3D density map. A gap is visible between 

neighboring Y-complexes in the distal ring (tan). Bottom: molecular models are shown in the 

map with MBMs indicated (*).

(D) Y-complexes from the distal (left) and proximal (center) outer rings are shown, along 

with a staggered pair (right). A torus-like bulge and Nup133 spur are present in the tails of 

distal and proximal Y-complexes, respectively.

(E) The pair of Y-complexes outlined in Figure 4A is shown with density for a Nup188/192 

molecule (red) and three orphans (numbered 1–3). Orphans, MBMs(*), and a tripod of 

β-propellers are labeled. Scale bars are indicated on the panels.
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Figure 5. Structure of the in situ NPC
(A) Panels 1–3: three views are shown for the in situ yeast NPC: inner ring (blue), 

cytoplasmic and nucleoplasmic outer rings (tan), Pom152 ring (pink), pore membrane 

(transparent white), and basket anchors (silver). Connections from Nsp1 complexes to 

FG domains are indicated with black dots. Cytoplasmic and nuclear outer rings differ in 

diameter (radial offset, dashed lines). Panels 4–6: the core scaffold with the Pom152 ring is 

separated into component rings.

(B) Cross-section of the in situ NPC with molecular models for three protomers.
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(C) Side view of a nearly complete protomer. β-propellers with MBM contacts are indicated 

(*).

(D and E) Model for the tilted cytoplasmic outer ring with the Nup82 complex (Nup82c) 

and Dyn2 dimers. β-propellers with MBMs (*) and N-terminal FG domains from Nsp1 and 

Nup159 are indicated (colored dots).

(F) Tilted view of the flat nucleoplasmic outer ring with docked models. A gap is present 

between adjacent Y-complexes and MBM contact sites are indicated (*); the Nup133 spur 

contacts the membrane. Scale bars are indicated.
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Figure 6. Inner ring dilation, basket anchors, and FG domain connections
(A) Models for aligned inner rings from the isolated (left) and in situ NPC (right). Radial 

dilation increases the diameter of the central channel and creates a gap between adjacent 

spokes. Nup157 and Nup170 membrane attachment sites (red dots) and spoke layers are 

indicated.

(B) The nuclear outer ring (tan) with basket anchor complexes (silver) is viewed from the 

nucleoplasm. Two anchor motifs are present for each Y-complex (dashed oval).

Akey et al. Page 46

Cell. Author manuscript; available in PMC 2022 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(C) Basket anchor complexes have two similar motifs (red and blue); each motif contains a 

“bent T” and an extended SE that were mapped with 2-helix coiled coils. Contact sites with 

the Y-complex are indicated (red and blue asterisks).

(D) Tilted view of a Y-complex in the nuclear outer ring with basket anchors.

(E) Extended 3-helix bundles of the Nsp1 complex (green) form a ring that faces the central 

channel. Connections to the central transporter are mapped with rods (red and blue) and are 

aligned with N termini (dark blue) of Nsp1 heterotrimers at local 2-fold axes (2).

(F) FG connections of the in situ NPC originate from three points on each spoke (*) that 

align with the N-termini of Nsp1 complexes (dark blue). Radial expansion creates a gap 

between adjacent spokes and separates adjacent Nsp1 complexes; a lateral contact is formed 

between adjacent spokes at the gap (arrow). Scale bars are indicated.
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Figure 7. Diagrammatic summary of major insights into the yeast NPC
(A) A wiring diagram for Nic96 connectors that extend from CTDs in the membrane 

interacting layer to the diagonal walls. Red stars indicate approximate positions of 

phosphorylation sites in human Nup93: membrane interacting layer (blue-purple), adaptin-

like layer (red), and inner layer (green).

(B) The IBB helix of Importin-ɑ/Karyopherin ɑ interacts with Importin-β/Karyopherin β1, 

and this motif is compared with Nic96 NTD helices bound to Nup192 and Nup188.

(C) Three structural variants of the NPC are present in the same yeast cell.
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(D) Inner ring dilation forms gaps between adjacent spokes; this is accompanied by a radial 

displacement of the pore membrane and expansion of the Pom152 ring.

(E) Duplication within major NPC sub-structures: related Nups are shown in red-brown and 

light blue. Basket anchor motifs (red and royal blue double lines) are present in two copies 

per Y-complex. This lateral duplication may encompass the basket itself (vertical dashed 

lines). (inset) Cartoon of a basket anchor motif with labelled structure elements.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit IgG Protein A Purified Innovative Research Cat.# IR-RB-GF; RRID:AB_1501660

anti-GFP llama nanobody LAM-16 (Fridy et al., 2014) anti-GFP nanobody

Chemicals, peptides, and recombinant proteins

PreScission protease GE Healthcare Life Sciences Cat.# 27–0843–01

Coomassie R250 MP Biomedicals Cat.# 190682

GelCode Blue Stain Reagent Thermo Fisher Scientific Cat.# 24592

DSS(DiSuccinimidyl Suberate)-H12 Creative molecules Cat.# 001S

Coomassie Blue R250 MP Biomedicals Cat.# 190682

Paraformaldehyde, 16% (Aqueous) Ted Pella Cat #18505

Trypsin Sequencing Grade, modified Roche Cat.# 11418033001

Iodoacetamide Sigma Cat.# I6125–10 g

ProLong Glass Antifade Mountant Invitrogen P36980

Nupage LDS Sample buffer Thermo Fisher Scientific Cat.# NP0007

Critical commercial assays

Dynabeads M270 Epoxy Thermo Fisher Scientific Cat# 143.02D

Deposited data

Chemical Cross-linking with Mass Spectrometry readout 
datasets This paper Zenodo (https://zenodo.org/) Accession#: 

5721514

Original data and custom code used for analysis at Stowers 
Original Data Repository This paper https://www.stowers.org/research/

publications/libpb-1583

Low-resolution, multi-part 3D structure of the isolated yeast 
NPC This paper EMD-24225

Double nuclear outer ring of the isolated yeast NPC This paper EMD-24231

Fitted model for the double nuclear outer ring of the isolated 
yeast NPC This paper PDB 7N84

Inner ring spoke from the isolated yeast NPC This paper EMD-24232

Fitted model for the inner ring spoke from the isolated yeast 
NPC This paper PDB 7N85

Combined 3D structure of the isolated yeast NPC This paper EMD-24222

Structure of the in situ yeast NPC This paper EMD-24258

Fitted model for the in situ yeast NPC This paper PDB 7N9F

Integrative models for Pom152 rings This paper PDB-Dev PDBDEV_00000097

Files with input data, scripts, and output results for the 
integrative threading of Nic96 NTDs and modeling This paper https://github.com/integrativemodeling/

NPC_3.0

Integrative model of yeast NPC (Kim et al., 2018) PDB-Dev PDBDEV_00000012

Crystal structure of a Nic96 R1 SLiM bound to the 
Chaetomium Nsp1 complex (Stuwe et al., 2015) PDB 5CWS

Crystal structure human Karyopherin/Importin β1 co-
crystallized with the α-helical, IBB (Importin beta binding) 
domain of Karyopherin/Importin α

(Cingolani et al., 1999) PDB 1QGK, 1QGR
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Crystal structure human Karyopherin/Importin β1 co-
crystallized with the Importin β1-Snurportin 1 IBB

(Bhardwaj and Cingolani, 
2010)
(Mitrousis et al., 2008) PDB 3LWW PDB 2Q5D

Tomographic 3D map of human NPC from nuclear envelopes (von Appen et al., 2015) EMD-3103

In situ tomographic 3D map of the algal NPC (Mosalaganti et al., 2018) EMD-4355

In situ tomographic 3D map of the S. cerevisiae NPC (Allegretti et al., 2020) EMD-10198

Experimental models: Saccharomyces cerevisiae strains

MATα ade2–1 ura3–1 his3–11,15 trp1–1 leu2–3,112 can1–
100 MLP1 -PPX-ProteinA::HIS5 (Kim et al., 2018) Mlp1ppxPrA

MATα bar1 ura3–1 his3–11 leu2–3,112 trp1–1 ADE2 LYS2, 
Nic96-mTurq2-HIS3, Nup84-GFP1–10-URA3MX + pSJ1321 
(mCherry-GFP11-PUS1-LEU2)

This study SLJ13070

MATα bar1 ura3–1 his3–11 leu2–3,112 trp1–1 ADE2 LYS2, 
Nic96-mTurq2-HIS3, Nup84-GFP1–10-URA3MX+ pSJ1568 
(mCherry-GFP11-SCS2-TM-LEU2)

This study SLJ13072

MATα bar1 ura3–1 his3–11 leu2–3,112 trp1–1 ADE2 
LYS2, Nic96-mTurq2-HIS3, Nup84-GFP1–10-URA3MX, 
Mlp1-mCherry-HYGMX + pSJ1679 (GFP11-Pus1-LEU2)

This study SLJ13221

MATα bar1 ura3–1 his3–11 leu2–3,112 trp1–1 ADE2 LYS2, 
Nic96-mTurq2-HIS3, Nup84-GFP1–10-URA3MX, Mlp1-
mCherry-HYGMX + pSJ2536 (GFP11-SCS2TM-LEU2)

This study SLJ13263

Recombinant DNA: List of plasmids used in this study

pRS315-NOP1pr-GFP11-mCherry-PUS1
(Smoyer et al., 2016); 
Addgene #86413 pSJ1321

pRS315-NOP1pr-GFP11-mCherry-SCS2TM
(Smoyer et al., 2016), 
Addgene #86416 pSJ1568

pRS315-NOP1pr-GFP11-PUS1
(Smoyer et al., 2016), 
Addgene #86414 pSJ1679

pRS315-NOP1pr-GFP11-SCS2TM This study pSJ2536

Software and algorithms

pLink (Yang et al., 2012) http://pfind.ict.ac.cn/software/pLink/

UCSF Chimera, version 1.13 (Pettersen et al., 2004) https://www.cgl.ucsf.edu/chimera/

IMP, version 2.8 (Russel et al., 2012) https://integrativemodeling.org/

RELION 3.0 (Nakane et al., 2018) https://github.com/3dem/relion

MotionCor2 (v1.2.3) (Zheng et al., 2017)) https://msg.ucsf.edu/software

GCTF (Zhang, 2016) https://www2.mrc-lmb.cam.ac.uk/research/
locally-developed-software/zhang-software/

Gautomatch ———————— https://www2.mrc-lmb.cam.ac.uk/research/
locally-developed-software/zhang-software/

Coot (0.8.9.2) (Casañal et al., 2020) https://www2.mrc-lmb.cam.ac.uk/personal/
pemsley/coot/

NAMD/MDFF Molecular dynamics flexible fitting (Trabuco et al., 2008)

https://www.ks.uiuc.edu/Development/
Download/download.cgi?
PackageName=NAMDhttps://github.com/
ryanmcgreevy/mdff

EMAN2 (Tang et al., 2007)
(Chen et al., 2019a)

https://blake.bcm.edu/emanwiki/EMAN2/
Install

SerialEM (Mastronarde, 2005) https://bio3d.colorado.edu/SerialEM/
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Other

Mass Spectrometer Thermo Fisher Scientific Orbitrap Fusion

Mass Spectrometer Thermo Fisher Scientific Q Exactive Plus

Liquid Chromatograph Thermo Fisher Scientific Easy-nLC 1000

Easy-Spray column Thermo Fisher Scientific ES800

NuPage 4–12% Bis-Tris Gel 1.0mm x 10 well Thermo Fisher Scientific Cat.# NP0321Box

Quantifoil holy carbon grids Quantifoil Micro Tools R2/2 400 mesh copper

Quantifoil holy carbon grids R2/1 200 mesh copper Electron Microscopy Sciences Q2100CR1
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